EVALUATION OF THE ECONOMIC EFFECT OF IMPLEMENTING A FUZZY LOGICAL INDICATION SYSTEM FOR MAKING MANAGEMENT DECISIONS IN A TESTING LABORATORY

Authors

DOI:

https://doi.org/10.31732/2663-2209-2025-80-235-241

Keywords:

economic effect, fuzzy logic, management decisions, testing laboratory, risk assessment, intelligent management systems

Abstract

The object of the study is the process of evaluating and economically substantiating the effect of implementing a fuzzy logical inference system into the process of making management decisions in a testing laboratory. The paper considers the current problem of increasing the efficiency of testing laboratory management in conditions of uncertainty, risk and limited statistical data, which is due to the need to ensure compliance with the requirements of international standards ISO/IEC 17025:2019, ISO 9001:2015 and ISO 31000:2018. It is noted that traditional probabilistic risk assessment methods do not always ensure the reliability of results in the event of insufficient data or the availability of qualitative expert assessments, while fuzzy logical inference systems allow for the effective combination of quantitative and linguistic risk parameters. The purpose of the study is to assess the economic effect of implementing a fuzzy logic-based management decision-making model in a testing laboratory, which allows minimizing losses, reducing uncertainty and increasing the effectiveness of management actions. The article presents a scientifically sound approach to quantitative assessment of the economic effect, which takes into account the reduction of costs for eliminating errors, reducing decision-making time, optimizing quality control processes and increasing the productivity of laboratory tests. The scientific novelty lies in the development of a methodology for determining the integral economic effect through a combination of risk reduction indicators obtained on the basis of a fuzzy model Q=f(I1,I2,…,In), with the economic parameters of laboratory functioning. A two-component evaluation system is proposed, which includes a direct effect - cost savings, and an indirect effect - an increase in personnel productivity and the efficiency of management processes.

The practical significance of the study is that the fuzzy logical inference system forms an adaptive management tool for laboratories, which allows making decisions based on a combination of quantitative indicators and expert judgments, taking into account measurement risks, the human factor and technological instability. The results obtained can be used to improve quality management systems in testing and metrology laboratories, as well as as a methodological basis for the development of digital intelligent risk management systems in the field of scientific and technical control.

Downloads

Download data is not yet available.

Author Biographies

Oleksandr Kuzmenko, KROK University

Postgraduate student, “KROK” University, Kyiv, Ukraine

Leonid Vitkin, KROK University

Doctor of sciences (Engineering), professor of management technologies department, “KROK” University, Kyiv, Ukraine

References

ISO/IEC 17025:2017. (2017). General requirements for the competence of testing and calibration laboratories. ISO/IEC 2017, Published in Switzerland. URL: https://www.iso.org/ru/standard/66912.html

ISO 9001:2015. (2015). Quality management systems — Requirements. ISO 2015, Published in Switzerland. URL: https://www.iso.org/standard/ 62085.html

ISO 31000:2018 (2018). Risk management — Guidelines. ISO 2018, Published in Switzerland. URL: https://www.iso.org/standard/65694.html

Zadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 100(1–3), 9–34.

Mamdani, E. H. (1977). Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers, 26(12), 1182–1191. URL: https://ieeexplore.ieee.org/document/1674779

Kosko, B. (1994). Fuzzy systems as universal approximators. IEEE Transactions on Computers, 1329–1333. URL: https://sipi.usc.edu/~kosko/FuzzyUniversalApprox.pdf

Кочетков, О. В., Гаур, Т. О., & Машін, В. М. (2019). Система оцінки ризиків інформаційної безпеки підприємства на основі нечіткої логіки. Наукові праці ОНАЗ ім. О. С. Попова, 1, 97–104. URL: https://doi.org/10.33243/2518-7139-2019-1-1-97-104

Калініченко, З. Д. (2021). Ризик-менеджмент: навчальний посібник. Дніпро: ДДУВС. ISBN 978-617-7-7665-67-6.

Топчій, Н. В. (2020). Аналіз ризиків у випробувальній лабораторії органу оцінки відповідності. Вчені записки ТНУ імені В. І. Вернадського. Серія: Технічні науки, 31(70), 6(1), 1–5. URL: https://doi.org/10.32838/TNU-2663-5941/2020.6-1/01

Кузьменко, О. О., & Віткін, Л. М. (2024). Розробка математичної моделі визначення ризику. Вчені записки Університету «КРОК». Розділ 2. Управління та адміністрування, 1(73), 188–194.

Віткін, Л. М., & Сингаївська, О. О. (2021). Особливості побудови багатофакторної моделі управління діяльністю випробувальної лабораторії легкої промисловості. Вчені записки Університету «КРОК», 1(61), 120–130.

Published

2025-12-30

How to Cite

Kuzmenko, O., & Vitkin, L. (2025). EVALUATION OF THE ECONOMIC EFFECT OF IMPLEMENTING A FUZZY LOGICAL INDICATION SYSTEM FOR MAKING MANAGEMENT DECISIONS IN A TESTING LABORATORY. Science Notes of KROK University, (4(80), 235–241. https://doi.org/10.31732/2663-2209-2025-80-235-241

Issue

Section

Chapter 2. Management and administration