ASSESSMENT AND MANAGEMENT OF RESKILLING BARRIERS IN IT: AN INDEX-BASED APPROACH USING NLP
DOI:
https://doi.org/10.31732/2663-2209-2025-79-268-276Keywords:
reskilling, unpreparedness index, digital transformation, educational management, NLPAbstract
The article examines the issue of adult unpreparedness for reskilling in the IT sector as a managerial challenge in the context of the digital transformation of the labor market. Based on a survey of 127 individuals planning a change in their professional trajectory, the authors propose an Unpreparedness Index - an aggregated indicator capturing resource-related and organizational barriers (lack of available time, absence of a personal computer, unstable internet access, no prior experience with online education). The index makes it possible to identify categories of respondents with a heightened risk of disengagement from the learning process and to develop a typology of participants based on their initial capacity for professional retraining. In addition, open-ended responses were processed using natural language processing (NLP) methods, which enabled a deeper analysis of respondents’ motivations, expectations, and concerns. The study revealed a strong relationship between the level of unpreparedness and the self-assessment of technical skills, as well as significant variation depending on the intended IT specialization. The lowest barriers were recorded among respondents aiming for frontend or backend development, while future analysts and project managers reported higher levels of unpreparedness. The results are of practical importance for educational institutions, HR departments, and designers of reskilling programs. The proposed index can serve as a diagnostic tool for audience segmentation, the identification of priority support groups, and the design of adaptive educational trajectories. The article underscores the value of integrating both quantitative and qualitative approaches in the study of career transformation and provides an empirical foundation for informed managerial intervention. Thus, the proposed approach enables not only the quantitative assessment of readiness barriers but also their interpretation within educational and managerial contexts as indicators of potential risk and as guides for developing personalized support strategies. The article expands the toolkit of educational management by shifting from intuitive to structured methods of addressing obstacles to reskilling - an especially relevant need amid rapid change and a persistent shortage of IT professionals.
Downloads
References
Bessen, J. E. (2019). AI and jobs: The role of demand. NBER Working Paper No. 24235. https://doi.org/10.3386/w24235
Cappelli, P., & Tavis, A. (2018). HR goes agile. Harvard Business Review, March-April 2018.
Chebolu, S. U. S., Dernoncourt, F., Lipka, N., & Solorio, T. (2023). Survey of aspect-based sentiment analysis datasets. arXiv. https://doi.org/10.48550/arXiv.2204.05232
Геревенко, А. М., Ільїна, Т. В., & Ібрагімова, Л. А. (2024). Використання цифрових платформ для підвищення якості професійної освіти. Академічні візії, (31), 426–435. https://www.academy-vision.org/index.php/av/article/view/1149
Hou, F., & Chen, W.-H. (2019). Intergenerational education mobility and labour market outcomes: Variation among the second generation of immigrants in Canada (Catalogue No. 11F0019M2019006). Statistics Canada. https://www150.statcan.gc.ca/n1/en/catalogue/11F0019M2019006
Hua, Y. C., & Zhang, H. (2024). A systematic review of aspect-based sentiment analysis: Domains, methods, and trends. Artificial Intelligence Review, 57, Article 296. https://doi.org/10.1007/s10462-024-10906-z
Kaplan, D. M., & Lerouge, C. (2007). Managing on the edge of change: Human resource management of information technology employees. Human Resource Management, 46(3), 329–351. https://doi.org/10.1002/hrm.20166
Leidner, J. L., & Stevenson, M. (2024). Challenges and opportunities of NLP for HR applications: A discussion paper. arXiv. https://doi.org/10.48550/arXiv.2405.07766
Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The impact of artificial intelligence on workers’ skills: Upskilling and reskilling in organisations. Informing Science: The International Journal of an Emerging Transdiscipline, 26, 39–68. https://doi.org/10.28945/5078
Nakash, M. (2024). Reskilling and upskilling the workforce: Text mining to identify patterns and trends in research. In Proceedings of the 4th International Conference on Research in Human Resource Management (ICRHRM). https://doi.org/10.33422/icrhrm.v1i1.169
Nedelkoska, L., & Quintini, G. (2018). Automation, skills use and training. OECD Social, Employment and Migration Working Papers, No. 202. https://doi.org/10.1787/2e2f4eea-en
Пищуліна, О., & Маркевич, К. (2022). Ринок праці в умовах війни: основні тенденції та напрями стабілізації: аналітична записка. Центр Разумкова.
Qamar, Y., & Samad, T. A. (2022). Human resource analytics: A review and bibliometric analysis. Personnel Review, 51(1), 251–283. https://doi.org/10.1108/PR-04-2020-0247
Robert, L. P., Pierce, C., Marquis, L., Kim, S., & Alahmad, R. (2020). Designing fair AI for managing employees in organizations: A review, critique, and design agenda. Human–Computer Interaction, 35(5–6), 456–486. https://doi.org/10.1080/07370024.2020.1735391
Stephany, F., & Teutloff, O. (2024). What is the price of a skill? The value of complementarity. Research Policy, 53(1), 104898. https://doi.org/10.1016/j.respol.2023.104898
Trisna, K. W., & Jie, H. J. (2022). Deep learning approach for aspect-based sentiment classification: A comparative review. Applied Artificial Intelligence, 36(1), 2014186. https://doi.org/10.1080/08839514.2021.2014186
van der Aalst, W. M. P., Adriansyah, A., & van Dongen, B. F. (2021). Process mining manifesto. In Business Process Management Workshops. https://doi.org/10.1007/978-3-642-28108-2_19
Yan, X., Guo, J., Lan, Y., & Cheng, X. (2013). A biterm topic model for short texts. In Proceedings of the 22nd International Conference on World Wide Web (WWW '13) (pp. 1445–1454). Association for Computing Machinery. https://doi.org/10.1145/2488388.2488514
Хромушина, Л. (2021). Стратегічні аспекти трансформації управлінської діяльності в умовах цифрової економіки та цифрового суспільства: приклад України. Сумський національний аграрний університет.

Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.