FEATURES OF SOLVING PROBLEMS FROM THE COURSES OF BUSINESS MATHEMATICS AND STATISTICS IN ENGLISH USING GENERATIVE ARTIFICIAL INTELLIGENCE

Authors

DOI:

https://doi.org/10.31732/2663-2209-2025-79-254-260

Keywords:

generative artificial intelligence, business mathematics, statistics, English language, post-plagiarism

Abstract

This publication explores the features of using generative artificial intelligence (GAI) to solve problems from business mathematics and statistics courses taught in English. Given the widespread integration of GAI into the educational process, this topic is highly relevant for both students and educators.

The study focused on some of the most widely used GAI tools today: ChatGPT, Gemini, Copilot, and Grok. The problems, provided in English, had known methods and solutions in advance, ensuring objective analysis. To enhance the validity of the research, the tasks were categorized by complexity: simple and complex.

The study found that:

Business mathematics and statistics problems are correctly interpreted by GAI tools when presented in English with a partially formalized description. Simple tasks (such as calculations, percentage problems, and data series processing) are successfully solved by all tested GAI tools. However, the level of explanation detail varies; for example, Copilot provides more concise answers without additional clarification. Complex problems—such as transportation tasks or those requiring the use of combined statistical methods—pose significant challenges for GAI. The results may be partially correct or entirely incorrect. Especially problematic are tasks with many variables or modified conditions (e.g., mismatches between supply and demand in transportation problems).

The likelihood of using GAI as a basis for plagiarism in solving complex business mathematics and statistics problems in English remains low.

Based on the findings, the following recommendations are made: Avoid including problems in individual student assignments that are easily solvable by GAI tools. Solve such problems in classrooms, using individualized data sets for each student. Actively use GAI tools to create educational materials, particularly variable problem sets. Implement assignments focused on explaining the logic of the solution, rather than merely obtaining the final answer.

Downloads

Download data is not yet available.

Author Biographies

Volodymyr Trotsko , KROK University

Ph.D. (Military), senior researcher, associate professor of computer science department, “KROK” University, Kyiv, Ukraine

Igor Chernozubkin, KROK University

PhD (Technical), associate professor of computer science department, “KROK” University, Kyiv, Ukraine

Ilona Novak, KROK University

Head of the Department of Foreign Languages and General Education Disciplines, University of Economics and Law "KROK", Kyiv, Ukraine

References

Awang, L. A., Yusop, F. D., & Danaee, M. (б.д.). Current practices and future direction of artificial intelligence in mathematics education: A systematic review. https://www.iejme.com/download/current-practices-and-future-direction-of-artificial-intelligence-in-mathematics-education-a-16006.pdf

Бойко, В. М. (2022). Сучасні технології навчання бізнес-математики в університеті. Видавництво КНУ.

Castillo, R. (2015). Transportation Problem. https://www.researchgate.net/publication/319393263_Transportation_Problem

Eaton International Journal for Educational Integrity. (2025). https://doi.org/10.1007/s40979-025-00187-6

Gabriel, F., Kennedy, J. P., Marrone, R., & Leonard, S. (б.д.). Pragmatic AI in education and its role in mathematics learning and teaching. https://www.nature.com/articles/s41539-025-00315-4

Holmes, A., Illowsky, B., & Dean, S. (б.д.). Introductory Business Statistics. https://openlibrary-repo.ecampusontario.ca/jspui/bitstream/123456789/486/1/introductory-business-statistics-33.86.pdf

Ковальчук, І. П. (2023). Використання штучного інтелекту в освіті: перспективи для викладання математики і статистики. Вісник Київського університету. Серія «Педагогіка і психологія», (74), 58–66.

Мельник, Т. В. (2024). Використання комп’ютерних додатків у курсі статистики для студентів економічних спеціальностей. Науковий вісник НЛТУ України, 34(1), 105–112.

Olivier, J.-P. (б.д.). Business Math a Step-by-Step Handbook 2023-A-D. Lyryx Learning Inc. https://collection.bccampus.ca/textbooks/business-math-a-step-by-step-handbook-2023-a-d-lyryx-learning-inc-447/

Ramki, H. (б.д.). The 21 best generative AI tools in 2025. Zapier. https://zapier.com/blog/generative-ai-tools/

Штучний інтелект у вищій освіті: ризики та перспективи інтеграції. (2024, липень 1 – серпень 11). Матеріали всеукраїнського науково-педагогічного підвищення кваліфікації. https://cuesc.org.ua/images/informlist/%D0%9C%D0%B0%D0%BA%D0%B5%D1%82%20advanced_training_OLA.pdf

Published

2025-09-30

How to Cite

Trotsko , V., Chernozubkin, I., & Novak, I. (2025). FEATURES OF SOLVING PROBLEMS FROM THE COURSES OF BUSINESS MATHEMATICS AND STATISTICS IN ENGLISH USING GENERATIVE ARTIFICIAL INTELLIGENCE. Science Notes of KROK University, (3(79), 254–260. https://doi.org/10.31732/2663-2209-2025-79-254-260

Issue

Section

Chapter 2. Management and administration