COMPARISON OF SYSTEMS OF FORECASTING THE DIRECTION OF CHANGES IN THE EXCHANGE RATE OF A FINANCIAL INSTRUMENT USING SIMPLE, EXPONENTIAL AND LINEAR WEIGHTED MOVING AVERAGES
DOI:
https://doi.org/10.31732/2663-2209-2022-71-19-30Keywords:
trading system, technical analysis indicator, moving average, simple moving average, exponential moving average, lianear weighted moving average, currency pair, stock market operation, financial marketsAbstract
Several modern scientific studies point to the fact that technical analysis indicators have a predictive power of various types. Accordingly, trading systems for working in financial markets built using them may have some practical value. This work explores a specific range of topical issues of development, testing, and implementation of a trading system that generates an instruction to execute a stock transaction based on the signals of technical analysis indicators, particularly exponential, weighted, and simple moving averages. The works of modern scientists have been analyzed in which options for using these indicators are considered. In this context, the current research aims to analyze the influence of linearly weighted moving average settings and their combinations on the profitability of the trading system, as well as to compare the results of such a system with the results of a strategy built on a combination of simple and exponential moving averages. General scientific (analysis, synthesis, comparison, modeling) and special (testing, statistical analysis, graphical, tabular) research methods were used to achieve the goal. Based on this, the tasks solved using indicators of this kind were formed. A methodology for selecting moving averages and their settings is proposed when creating, testing, and implementing a trader's trading system. A methodology for selecting moving averages and their settings is proposed when creating, testing, and implementing a trader's trading system. Several approaches to forming and interpreting the signal regarding the change in the rate of a financial asset generated by the system are considered. The work also analyzes the criteria for comparing the results of strategies at the testing stage. The results of the application of various options of strategies were calculated and compared, and the optimal ones were selected according to the given selection criteria. The simulation of trading operations was performed for the currency pair EUR/USD, and weekly quotes from 1999 to 2023 were used, based on which the optimal combination of indicators for use in the trading strategy was determined. It is also stated that the system, built on moving averages, has shortcomings and needs additional optimization. Variants of possible optimization and the corresponding toolkit that can be analyzed are indicated. Based on the results of the research, it was concluded that the proposed approach to the development and use of the trader's trading system can be used to perform accurate exchange operations.
Downloads
References
Бакай, Є. І. (2017) Модель прийняття рішень для фінансових часових рядів на основі пари середніх з використанням оцінки різних часових вимірів / Є. І. Бакай, В. В. Кабачий, Р. В. Маслій // Вісник Вінницького політехнічного інституту, 1, 70-77. Доступ через http://nbuv.gov.ua/UJRN/vvpi_2017_1_13
Мокін, В. Б., Жуков, С. О., Куперштейн, Л. М., & Слободянюк, О. В. (2022). Інформаційна технологія прогнозування курсу криптовалют на основі комплексної інженерії ознак. Вісник ВПІ, 2, 81-93. Доступ через https://ir.lib.vntu.edu.ua
Пилипченко, О., Кузьмінський, В., & Чумаченко, О. (2021). ВИКОРИСТАННЯ МЕТОДІВ ТЕХНІЧНОГО АНАЛІЗУ ДЛЯ ПРОГНОЗУВАННЯ РИНКУ КРИПТОВАЛЮТ. Вчені записки Університету «КРОК», 4(64), 28–35. DOI: 10.31732/2663-2209-2021-64-28-35
Хобта, В.М. (2022) Обґрунтування інвестиційних рішень на фондовому ринку / В.М. Хобта, В.А. Деревянко // Наукові праці ДонНТУ. Серія: «Економічна», 1(25), 13-19. Доступ через https://ea.donntu.edu.ua
Раєвнєва, О.В. (Ред.), Аксьонова, І.В., Бровко, О.І. (2019). Статистика. Доступ через http://repository.hneu.edu.ua
Савченко, В. (2023). ПОРІВНЯННЯ СИСТЕМ ПРОГНОЗУВАННЯ НАПРЯМУ ЗМІН КУРСУ ФІНАНСОВОГО ІНСТРУМЕНТУ З ВИКОРИСТАННЯМ ПРОСТИХ ТА ЕКСПОНЕНЦІЙНИХ КОВЗНИХ СЕРЕДНІХ. Вчені записки Університету «КРОК», 2 (70), 61-75. Доступ через DOI: 10.31732/2663-2209-2022-70-61-75
Akyildirim, E., Goncu, A., & Sensoy, A. (2021) Prediction of cryptocurrency returns using machine learning. Annals of Operations Research, 297, 3-36. Доступ через https://www.researchgate.net
ALONSO-MONSALVE, Saúl, et al. (2020) Convolution on neural networks for high-frequency trend prediction of cryptocurrency exchange rates using technical indicators. Expert Systems with Applications, 113-250. Доступ через https://www.researchgate.net
Altan, A., & Karasu, S. (2019). THE EFFECT OF KERNEL VALUES IN SUPPORT VECTOR MACHINE TO FORECASTING PERFORMANCE OF FINANCIAL TIME SERIES AND COGNITIVE DECISION MAKING. THE JOURNAL OF COGNITIVE SYSTEMS. Vol. 4, 1, 17-21. Доступ через https://www.researchgate.net
Zhang, Z., Zohren, S., & Stephen, R. (2020) Deep reinforcement learning for trading. The Journal of Financial Data Science. 25-40. Доступ через https://www.researchgate.net
ChartSchool. (n.d.) Moving averages: simple and exponential. Доступ через https://school.stockcharts.com/doku.php
MetaTrader4. (n.d.) Moving average. Доступ через https://www.metatrader4.com/en/trading-platform/help/analytics/tech_indicators
QuantifiedStrategies. (n.d.) Trading System And Strategy Performance Metrics Доступ через https://www.quantifiedstrategies.com/trading-strategy-and-system-performance-metrics
ATAS. (n.d.) Core mathematics for Forex traders. Part 2. Доступ через https://atas.net/trading-preparation/funds-management
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.