DIGITAL TRANSFORMATION OF QUALITY MANAGEMENT IN AN ENTERPRISE USING ARTIFICIAL INTELLIGENCE

Authors

DOI:

https://doi.org/10.31732/2663-2209-2025-79-294-300

Keywords:

artificial intelligence, quality management, digital transformation, production processes

Abstract

The article explores the digital transformation of quality management in enterprises under the conditions of active implementation of artificial intelligence technologies. The relevance of the topic is driven by the growing need to enhance the efficiency of quality assurance systems, especially in the context of global competition and increasing demands for accuracy, responsiveness, and flexibility in production processes. Traditional approaches to quality control are increasingly proving insufficient to meet modern challenges, particularly due to limitations in adapting to environmental changes and processing large volumes of data. This highlights the need to implement intelligent digital technologies capable of ensuring comprehensive, flexible, and predictive quality management at all stages of production.

The purpose of the study is to identify key opportunities and promising directions for improving the effectiveness of quality management through the use of artificial intelligence tools. The methodological basis of the research includes analysis of current scientific literature, systematization of approaches to quality assurance, and generalization of the results of digital solutions implementation in leading companies.

The study substantiates that the integration of AI enables a shift from fragmented to holistic quality management, providing a high level of analytical support for decision-making, risk forecasting, detection of hidden defects, and improved customer satisfaction. Technologies such as machine learning, computer vision, and neural networks are increasingly used for automated quality control, process optimization, and adaptive response to deviations.

However, along with its advantages, digital transformation is accompanied by a number of challenges. These include technical implementation barriers, a shortage of qualified data analytics and AI specialists, ethical concerns related to algorithms, and the need for cybersecurity and data privacy. Future research prospects lie in the development of sector-specific models of digital quality management adapted to the conditions of Ukrainian enterprises, as well as in the formulation of effective strategies for AI integration, taking into account economic feasibility, organizational readiness, and overall digital development strategy.

Keywords: artificial intelligence, quality management, digital transformation, production processes.

 

Downloads

Download data is not yet available.

Author Biographies

Igor Kovalchuk, KROK University

Postgraduate student of the Educational and Scientific Program "Management", Department of Managerial Technologies,“KROK” University, Kyiv

Olga Orlova-Kurilova, KROK University

Doctor of Science in Economics, Associate Professor, Professor of the Department of Information Management, Mathematics and Statistics "KROK" University, Kyiv, Ukraine

References

Фісун, К. А. (2018). Організація системи управління якістю продукції в сучасних умовах. Вісник економіки транспорту і промисловості, (62), 204–210. http://nbuv.gov.ua/UJRN/Vetp_2018_62_28

Кузьома, В. В., & Павлюк, С. І. (2020). Якість продукції як вирішальний фактор забезпечення конкурентоспроможності підприємства. Бізнес Інформ, (12), 252–258. https://doi.org/10.32983/2222-4459-2020-12-252-258

Леськів, Г. З., Сватюк, О. Р., & Леськів, Г. Я. (2024). Вплив технологій штучного інтелекту на систему управління якістю продукції. Серія економічна, (2), 7–15. https://doi.org/10.32782/2311-844X/2024-2-7

Мишко, О. В. (2014). Управління якістю – запорука підвищення конкурентоспроможності продукції. Економіка. Фінанси. Право, (3), 41–48. http://nbuv.gov.ua/UJRN/ecfipr_2014_3_12

Мальцев, А. С., & Крамський, С. О. (2019). Управління якістю продукції проектів: методологічні та прикладні аспекти. Управління розвитком складних систем, (37), 25–31. DOI: https://doi.org/10.30977/PPB.2226-8820.2023.30.96

Taylor, S., Nguyen, A., Krause, D., & Patel, R. (2023). Product quality management in global supply chains: A risk-based approach. International Journal of Production Research, 59(11), 3409–3432.

Bennett, C., Zhou, Y., Hartmann, E., & Weiss, G. (2023). Advanced quality control techniques in manufacturing: Integrating AI and IoT. Quality Management Journal, 30(4), 214–237.

Franklin, J., Moreno, V., Singh, S., & Kim, D. (2023). Continuous improvement and innovation in product quality management. Journal of Quality Technology, 55(2), 150–169.

Qualityze. (2025, April 23). AI in quality: Revolutionizing the QMS industry. https://qualityze.com/blogs/ai-quality-revolutionizing-qms-industry

Wang, H. (2024). Analysis of the impact of artificial intelligence on modern enterprise management. Modern Economics & Management Forum, 5(3), 495–498. https://doi.org/10.32629/memf.v5i3.2370

Published

2025-09-30

How to Cite

Kovalchuk, I., & Orlova-Kurilova, O. (2025). DIGITAL TRANSFORMATION OF QUALITY MANAGEMENT IN AN ENTERPRISE USING ARTIFICIAL INTELLIGENCE. Science Notes of KROK University, (3(79), 294–300. https://doi.org/10.31732/2663-2209-2025-79-294-300

Issue

Section

Chapter 2. Management and administration