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Анoтація. Є багато книг, досліджень та дослідницьких робіт, які показують деякі основні висновки з 

математики страхування, не пов'язаного із життям, за допомогою теоретичних страхових операцій. 

Страхова справа була описана як випадковий і безперервний процес часу. Це дає більш складний погляд на 

математику страхування і дозволяє застосовувати останні результати теорії стохастичних процесів. 

Переважаюча думка щодо страхової математики (принаймні серед математиків) полягає в тому, що це 

досить суха і нудна справа, оскільки інтерпретується лише на мить і насправді не має цікавих структур. 

Ніхто не повинен сприймати цю точку зору як номінальну, і цікаво працювати з математичними 

структурами для страхування, не пов'язаного із життям. Можливість отримання абсолютного точного 

знання існує лише у випадках, пов‘язаних із визначенням фізичних параметрів (розмірів, маси, сили тощо) 

об‘єктів оточуючого середовища та за умови використання складних лабораторних методів. У повсякденному 

житті знання щодо майбутнього, яке знаходиться під впливом значної кількості факторів, що не піддаються 

вивченню та передбаченню, базуються на основі приблизних оцінок, що і формує поняття невизначеності. 

Тож поточний сценарій також може бути цікавим для тих, хто не обов‘язково хоче провести решту свого 

життя у страховій компанії. Ці процеси застосовані у статті, щоб представити багато інших областей 

прикладної теорії ймовірностей, таких як регенеративна теорія, вирівнювання, стохастичні мережі, теорія 

точкових процесів, застосування рівнянь Пуассона, регенеративні процеси. Де відповідний стохастичний 

процес називають броунівським рухом, який займається моделюванням вимог, що надходять до страхового 

бізнесу, який показує, скільки страхової премії слід сплатити, щоб уникнути банкрутства (знищення) 

страхової компанії, ми маємо на увазі набір контрактів або полісів для подібних ризиків, таких як 

автострахування, викрадення житла або страхування шкоди від води в односімейних будинках. 

Ключові слова: теорія ризику; процеси Пуассона; процес числа претензій; однорідний процес Пуассона; 

модель Крамера-Лундберга; однорідні; неоднорідні; процеси Маркова; час прибуття. 

Формули: 77; рис.: 0; табл.: 0; бібл.: 5. 

 

Annotation. There are many books, studies and research papers that show some basic findings in the mathematics 

of non-life insurance through the use of theoretical insurance operations. The insurance business has been described as 

a random and continuous process of time. This gives a more complex view of insurance mathematics and allows one to 

apply recent results from the theory of stochastic processes. The prevailing opinion about insurance mathematics (at 

least among mathematicians) is that it is rather dry and tedious matter because one interprets only momentarily and 

does not actually have any interesting structures. Nobody should take this view at face value and it is fun to work with 

mathematical structures for non-life insurance. The possibility of obtaining absolutely accurate knowledge exists only 

in cases involving the determination of physical parameters of size, mass, force, etc.) of environmental objects and 

subject to the use of complex laboratory methods. In everyday life, knowledge about the future, which is influenced by a 

large number of factors that cannot be studied and predicted, is based on approximate estimates, which forms the 

concept of uncertainty. So the current script can also be interesting for those who don't necessarily want to spend the 

rest of their lives with an insurance company. These processes lie in this paper to introduce many other fields of applied 

probability theory, such as regenerative theory, alignment, stochastic networks, point process theory, application such 

as Poisson, Poisson's compound, and regenerative processes. Where the appropriate stochastic process has been called 

the Brownian movement, which deals with the modeling of claims that reach the insurance business, which advises on 

how much insurance premium should be paid to avoid bankruptcy (destruction) of the insurance company by this we 

mean a set of contracts or policies for similar risks such as auto insurance Certain cars, home theft or water damage 

insurance in single-family homes. 
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Introduction. Due to the numerous 

research and theories in actuarial mathematics 

having a very good background in 

measurement theory, probability theory, and 

stochastic processes, it is natural to present 

and clarify about non-life insurance based on 

knowledge of these theories. In particular, the 

stochastic process theory and applied 

probability theory (of which insurance 

mathematics is a part) have made significant 

progress over the past 50 years, and in this 

article I highlight presenting some of the 

fundamental findings in the mathematics of 

non-life insurance using theoretical processes. 

It includes the basic model of group risk 

theory, combining claims volumes and claims 

arrival times. The claim number process, i.e. 

the process of calculating claims arrival times, 

was one of the main things I focused on. 

Three main operations of claim number are 

presented: Poisson process, regeneration 

process, mixed Poisson process, generalized 

Poisson process or regeneration theory, where 

these topics are related to reach an 

understanding of the essay topic, and the total 

claim amount operations and validity of the 

basic structure, where random walk is one of 

the simplest processes. Randomization and in 

many cases it allows an explicit calculation of 

the distributions and their properties. And I'll 

just explain some basic tools like the major 

revamp on an informal level. Point process 

theory will be used indirectly in many places, 

in particular, in the section on Poisson 

process, and the idea of stochastic scaling will 

be mentioned. 

Literature review. There is a lot of 

research and studies presented on this topic, 

for example Ole Hesselager's 1998 notes and 

exercises for the Basic Course on Non-Life 

Insurance at the Actuarial Mathematics 

Laboratory in Copenhagen, and  A very 

interesting person in economic theory and 

financial mathematics the Russian 

mathematician Leonid Kantorovich, was 

specialist in functional analysis In 1938, and 

was also the book Side Risk by the writer 

Happy Harry. Applied Stochastic Process 

Theory.  

But through this paper, I will use risk 

analysis and inference with the applications 

used through it to find the best results in the 

field of insurance, special actuarial analysis, 

and mathematical series study. 

Aims. The main objective of this paper is 

to clarify standard stochastic models for non-

life insurance mathematics, to address risks, 

to clarify the relationship between 

mathematical chains and actuarial 

mathematics for non-life insurance, 

probability theory, random processes, applied 

stochastic processes, methods of their 

application, and how to prove theories related 

to them.  

We provide an overview of the definition 

of risk theory, the Poisson process which is 

the most common claim number process, the 

homogeneous Poisson process, the Kramer-

Lundberg model where the most common 

Poisson process corresponds, the Kramer-

Lundberg model, the Poisson homogeneous 

process in insurance mathematics, Markov 

processes, and the relationship between The 

Poisson process density function and Markov 

density, the relationships between the 

homogeneous and heterogeneous Poisson 

process, the homogeneous Poisson process as 

a regeneration process as arrival times, the 

distribution of arrival times, its applications 

and their results. 

Results. In my research was used risk 

analysis and its applications to find the results 

of actuarial mathematical chains, using the 

Poisson process to find the relationship 

between the chains processes , and used in the 

study of random walking, insurance, and 

meta-analysis, and to find the relationship 

between homogeneous and heterogeneous 

chains and their applications. 

The Basic Model. Risk theory is a 

synonym for non-life insurance mathematics, 

which deals with the modeling of claims that 

arrive in an insurance business ,and which 

gives advice on how much premium has to be 
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charged in order to avoid bankruptcy (ruin) of 

the insurance company. 

One of Lundberg‘s main contributions is 

the introduction of a simple mode which is 

capable of describing the basic dynamics of a 

homogeneous insurance portfolio.  

By this we mean a portfolio of contracts or 

policies for similar risks such as car insurance 

for a particular kind of car, insurance against 

theft in households or insurance against water 

damage of one-family homes [Thomas, 2006]. 

There are three assumptions in the model:     

 Claims happen at the times Ti satisfying   

( 0 ≤ T1 ≤ T2 ≤ · · ·. )  We call them claim 

arrivals or claim times or claim arrival times 

or, simply, arrivals. 

 The ith claim arriving at time ( Ti )causes 

the claim size or claim severity ( Xi ) . The 

sequence (Xi) constitutes an i.i.d sequence of 

non-negative random variables. 

 The claim size process (Xi) and the claim 

arrival process (Ti) are mutually independent. 

The i.i.d property of the claim sizes,  Xi , 

reflects the fact that there is a homogeneous 

probabilistic structure in the portfolio. The 

assumption that claim sizes and claim times 

be independent is very natural from an 

intuitive point of view. But the independence 

of claim sizes and claim arrivals also makes 

the life of the mathematician much easier, i.e., 

this assumption is made for mathematical 

convenience and tractability of the model. 

Now we can define the claim number 

process 

 

N(t) = #{i ≥ 1 : Ti ≤ t}, t ≥ 0                    (1) 

 

i.e., N = (N(t)) t≥0 is a counting process on 

[0,∞): N(t) is the number of the claims which 

occurred by time t. 

The object of main interest from the point 

of view of an insurance company is the total 

claim amount process or aggregate claim 

amount process: 

 

  ( )   ∑      

 ( )

∑    ,   - 

 

(  )            ( ) 

The process S = (S(t))t≥0  is a random 

partial sum process which refers to the fact 

that the deterministic index n of the partial 

sums Sn = X1 + ………+ Xn  is replaced by 

the random variables N(t): 

 

S(t) = X1 +…+ XN(t) = SN(t), t≥ 0        (3) 

 

It is also often called a compound (sum) 

process. We will observe that the total claim 

amount process S shares various properties 

with the partial sum process. 

For example, asymptotic properties such as 

the central limit theorem and the strong law of 

large numbers are analogous for the two 

processes. [Thomas, 2006], [Yuliya, 2016]. 

The Poisson Process: we consider the most 

common claim number process: the Poisson 

process. It has very desirable theoretical 

properties. For example, one can derive its 

finite-dimensional distributions explicitly. 

The Poisson process has a long tradition in 

applied probability and stochastic process 

theory. In his 1903 thesis, Fillip Lundberg 

already exploited it as a model for the claim 

number process N. Later on in the 1930s, 

Harald Cramer, the famous Swedish 

statistician and probability, extensively 

developed collective risk theory by using the 

total claim amount process S with arrivals Ti 

which are generated by a Poisson process. For 

historical reasons, but also since it has very 

attractive Mathematical properties, the 

Poisson process plays a central role in 

insurance mathematics [Thomas, 2006]. 

Below we will give a definition of the 

Poisson process, and for this purpose we now 

introduce some notation. For any real-valued 

function f on [0,∞) we write : 

 

f(s, t] = f(t) − f(s) , 0 ≤ s < t < ∞.           (4) 

 

Recall that an integer-valued random 

variable M is said to have a Poisson 

distribution with parameter λ > 0 (M ∼ 

Pois(λ)) if it has distribution : 

 

  (   )       
  

  
    

                                                               ( ) 
 

We say that the random variable M = 0  

a.s. has a Pois(0) distribution. Now we are 

ready to define the Poisson process. 
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A stochastic process N = (N(t))t≥0 is said 

to be a Poisson process if the following 

conditions hold: 

1.  The process starts at zero: N(0) = 0 a.s. 

2. The process has independent 

increments: for any  ti, i = 0, … n,  and n ≥ 1 

such that 0 = t0 < t1 < · · · < tn, the 

increments N(ti−1, ti], i = 1, . . . , n, are 

mutually independent. 

3. There exists a non-decreasing right-

continuous function μ : [0,∞) →[0,∞) 

with μ(0) = 0  such that the increments  

N(s, t] for 0 ≤ s < t < ∞  have a Poisson 

distribution Pois (μ(s, t]). We call μ the mean 

value function of N. 

4. The sample paths (N(t, ω))t≥0  of the 

process N are right-continuous  

for  t ≥ 0 and have limits from the left for t 

> 0. We say that N has sample paths. 

[Thomas,2006] 

We know that a Poisson random variable 

M has the rare property that 

 

 λ = EM = var(M),                                  (6) 

 

The definition of the Poisson process 

essentially says that, in order to determine the 

distribution of the Poisson process N, it 

suffices to know its mean value function. The 

mean value function μ can be considered as 

an inner clock or operational time of the 

counting process N. Depending on the 

magnitude of μ(s, t] in the interval (s, t], s < t, 

it determines how large the random increment 

N(s, t] is. [Thomas,2006],[Yuliya,2016] 

 

Since N(0) = 0 a.s. and μ(0) = 0, 

 

N(t) = N(t) − N(0) = N(0, t] ∼ Pois(μ(0, t]) 

= Pois(μ(t))                                                 (7) 

 

We know that the distribution of a 

stochastic process is determined by its finite-

dimensional distributions. The finite-

dimensional distributions of a Poisson process 

have a rather simple structure: for  0 = t0 < t1 

< · · · < tn < ∞, 

 

(N(t1),N(t2), . . . , N(tn)) =                  
N(t1),N(t1) + N(t1, t2],N(t1) + N(t1, t2] + 

N(t2, t3], … +∑  (       - 
                    (8) 

the random variables on the right-hand side 

is Poisson distributed. The independent 

increment property makes it easy to work 

with the finite-dimensional distributions of N: 

for any integers         ki ≥ 0, i = 1, . . . , n,                                     

 

P(N(t1) = k1 , N(t2) = k1 + k2 , . . ., N(tn) 

= k1 + · · · + kn)                                          (9) 

 

= P(N(t1) = k1 , N(t1, t2] = k2 , . . . 

,N(tn−1, tn] = kn)                                      (10) 

 

 

    (  )
( (  ))

  

   
    (     -

( (     -)  

   
    

    (        -
( (        -)  

   
             (11) 

 

    (  )
( (  ))

  

   
    (     -

( (     -)  

   
    

 
( (        -)  

   
                           (12) 

 

The Homogeneous Poisson Process, the 

Cramer-Lundberg Model  

The most popular Poisson process 

corresponds to the case of a linear mean value 

function μ: 

 

μ(t) = λ t , t ≥ 0,                                     (13) 

 

for some λ > 0. A process with such a 

mean value function is said to be 

homogeneous, 

Inhomogeneous otherwise. The quantity λ 

is the intensity or rate of the homogeneous 

Poisson process. If  λ = 1,  N is called 

standard homogeneous Poisson process. 

More generally, we say that N has an 

intensity function or rate function λ  if  μ is 

absolutely continuous,  i.e., for any  s < t  the 

increment μ(s, t] has representation 

 

  (      -  ∫  ( )   
 

 
                        (  )   

 

for some non-negative measurable function 

λ.  A particular consequence is that μ is a 

continuous function.                                                            

We mentioned that μ can be interpreted as 

operational time or inner clock of the Poisson 



ISSN (Print) 2307-6968, ISSN (Online) 2663-2209 

Вчені записки Університету «КРОК» №3 (59), 2020 

 

179 

process. If N  is homogeneous, time evolves 

linearly  

 

μ(s, t] = μ(s + h, t + h] for any h > 0 and 0 

≤ s < t < ∞.                                             (15) 

 

 A homogeneous Poisson process with 

intensity λ has : 

1-  has sample paths,  2-  starts at zero,  3- 

has independent and stationary increments,  4- 

N(t) is Pois(λt) distributed for every  t > 0.  

Tationarity of the increments refers to the 

fact that for any 0 ≤ s < t and h > 0, 
 

N(s, t]   N(s + h, t + h] ∼ Pois(λ (t − s)),                    

(16)  

 

The Poisson parameter of an increment 

only depends on the length of the interval ,A 

process on [0,∞) called a Levy process. The 

homogeneous Poisson process is one of the 

prime examples of Levy processes. [Thomas, 

2006], [Yuliya, 2016], [Yuliya & Georgiy 

2017]. 

The Cramer-Lundberg model : 

The homogeneous Poisson process plays a 

major role in insurance mathematics. If we 

specify the claim number process as a 

homogeneous Poisson process, the resulting 

model which combines claim sizes and claim 

arrivals is called  Cramer-Lundberg model : 

 

* Claims happen at the arrival times  0 ≤ 

T1 ≤ T2 ≤ · · ·  of a homogeneous Poisson 

process N(t) = #{i ≥ 1 : Ti ≤ t}, t ≥ 0. 

 

* The ith claim arriving at time Ti causes 

the claim size Xi. The sequence (Xi)  

constitutes an i.i.d  sequence of non-

negative random variables. 

* The sequences (Ti) and (Xi) are 

independent. In particular, N and (Xi) are 

independent. 

The total claim amount process  S  in the 

Cramer-Lundberg model is also called a 

compound Poisson process. [Thomas, 2006], 

[Yuliya, 2016], [Yuliya & Georgiy 2017]. 

The Markov Property 

Poisson processes constitute one particular 

class of Markov processes on [0,∞) with state 

space  N0 = {0, 1, . . .}. This is a simple 

consequence of the independent increment 

property. It is left as an exercise to verify the 

Markov property, i.e., for any 0 = t0 < t1 < · · 

· < tn , and non-decreasing natural numbers   

 

ki ≥ 0,  i = 1, . . . , n,  n ≥ 2,                  (17)

  

 

P( N(tn) = kn | N(t1) = k1 , . . . , N(tn−1) = 

kn−1 )                                                       (18) 
= P( N(tn) = kn | N(tn−1) = kn−1 ) 

 

Marko process theory does not play a 

prominent role on modern life insurance 

mathematics, where Markov models are 

fundamental. 

However, the intensity function of a 

Poisson process N  has a nice interpretation as 

the intensity function of the Markov process 

N. Before we make this statement precise, 

recall that the quantities 

 

Pk,k+h(s, t) = P(N(t) = k + h | N(s) = k) = 

P(N(t) − N(s) = h) ,                                  (19) 

 

0 ≤ s < t,    k,h ∈ N0 , 
 

are called the transition probabilities of the 

Markov process N with state space N0. Since 

a.e. path (N(t, ω))t≥0  increases, only needs to 

consider transitions of the Markov process N 

from  k  to  k+h  for h ≥ 0. The transition 

probabilities are closely related to the 

intensities which are given as the limits. 

[Thomas, 2006], [Yuliya, 2016], [Yuliya & 

Georgiy 2017].  

       ( )

     
   

      (     )

 
                                 (  ) 

 

Relation of the intensity function of the 

Poisson process and its Markov intensities: 

 

Consider a Poisson process  N = (N(t))t≥0  

which has a continuous intensity function λ on 

[0,∞). Then, for k ≥ 0,  

 

      ( )   {
 ( )              
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the intensity function  λ(t) of the Poisson 

process  N  is nothing but the intensity of the 

Markov process  N  for the transition from 

state  k  to state  k + 1. The intensity function 

of a Markov process is a quantitative measure 

of the likelihood that the Markov process  N  

jumps in a small time interval. a Poisson 

process with continuous intensity function λ 

has jump sizes larger than 1.  Indeed, consider 

the probability that N has a jump greater than 

1 in the interval (t, t + s] for some    t ≥ 0, s > 

0: 

P( N(t, t + s] ≥ 2) = 1 − P(N(t, t + s] = 0) 

− P(N(t, t + s] = 1 )                                 (21) 

 

= 1 −   (     - − μ(t, t + s]   (     -        (22)  

 

Since λ is continuous, 

 

μ(t, t+s ] = ∫  ( )        ( ) (  
   

 

 ( ))         ,  as s ↓ 0                        (23) 

  

Moreover, a Taylor expansion yields for  X 

→ 0 that     = 1+x + o(x).  

Thus , we may conclude, as s ↓ 0, 

 

P(N(t, t + s] ≥ 2) = o(μ(t, t + s]) =o(s)     (24) 

 

It is easily seen that 

 

P(N(t, t + s] = 1)= λ(t) s (1 + o(1))            (25)  

 

Poisson process N with continuous 

intensity function λ is very unlikely to have 

jump sizes larger than 1. [Thomas, 2006], 

[Yuliya, 2016], [Yuliya & Georgiy 2017], 

[Philip, 2004]. 

Relations Between the Homogeneous and 

the Inhomogeneous Poisson Process : 

The homogeneous and the inhomogeneous 

Poisson processes are very closely related: in 

a deterministic time change transforms a 

homogeneous Poisson process into an 

inhomogeneous Poisson process, and vice 

versa. 

Let N be a Poisson process on [0,∞) with 

mean value function μ. We start with a 

standard homogeneous Poisson process  Ň 

and define 

 

Ň (t) = _ N(μ(t)), t≥ 0                        (26) 

 

It is not difficult to see that Ň is again a 

Poisson process on [0,∞). (Verify 

this! Notice that the cadlag property of μ is 

used to ensure the cadlag property of the 

sample paths Ň (t, ω).) Since 

 

Ň (t) = E Ň (t) = E Ň (μ(t)) = μ(t), t≥ 0 (27) 

 

and since the distribution of the Poisson 

process Ň is determined by its mean value 

function  ̂, it follows that N   Ň, where   , 

refers to equality of the finite-dimensional 

distributions of the two processes. Hence the 

processes Ň and N are not distinguishable 

from a probabilistic point of view, in the 

sense of Kolmogorov‘s consistency theorem. 

Moreover, the sample paths of Ň are cadlag as 

required in the definition of the Poisson 

process. 

Now assume that N has a continuous and 

increasing mean value function μ. This 

property is satisfied if N has an a.e. positive 

intensity function λ. 

 Then the inverse      of μ exists.  Ň (t) = 

N(   (t)) is a standard homogeneous Poisson 

process on [0,∞) if         ( ) = ∞. 

[Thomas, 2006], [Yuliya, 2016]. 

The Poisson process under change of time : 

Let μ be the mean value function of a 

Poisson process N and Ň  be a standard 

homogeneous Poisson process. Then the 

following statements hold: 

The process (Ň (μ(t)))t≥0 is Poisson with 

mean value function μ. 

If μ is continuous, increasing and 

       ( )  = ∞ then (N(μ−1(t)) t≥0 

is a standard homogeneous Poisson 

process. 

This result, which immediately follows 

from the definition of a Poisson process, 

allows one in most cases of practical interest 

to switch from an inhomogeneous Poisson 

process to a homogeneous one by a simple 

time change. In particular,it suggests a 

straightforward way of simulating sample 

paths of an inhomogeneous Poisson process N 

from the paths of a homogeneous Poisson 

process. 

In an insurance context, one will usually be 

faced with inhomogeneous claim arrival 
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processes. The above theory allows one to 

make an ―operational time change‖ to a 

homogeneous model for which the theory is 

more accessible. [Yuliya, 2016], [Yuliya & 

Georgiy 2017], [Thomas, 2006]. 

The Homogeneous Poisson Process as a 

Renewal Process : 

 In this we study the sequence of the arrival 

times 0 ≤ T1 ≤ T2 ≤ · · · of a homogeneous 

Poisson process with intensity λ > 0. It is our 

aim to find a constructive way for 

determining the sequence of arrivals, which in 

turn can be used as an alternative definition of 

the homogeneous Poisson process. This 

characterization is useful for studying the path 

properties of the Poisson process or for 

simulating sample paths .                                                                                                                        

We will show that any homogeneous 

Poisson process with intensity λ > 0 has 

representation 

 

N(t) = #{i ≥ 1 : Ti ≤ t}, t≥ 0 ,                

 

where  

 

Tn = W1 + · · · +Wn,   n ≥ 1                     (28)                 

 

and (Wi) is an i.i.d exponential Exp(λ)  

sequence. In what follows, it will be 

convenient to write     T0 = 0. Since the 

random walk (Tn) with non-negative step 

sizes Wn is also referred to as renewal 

sequence, a process N with representation for 

a general i.i.d sequence (Wi) is called a 

renewal (counting) process.                                                                                                     

The process N given with an i.i.d 

exponential Exp(λ) sequence (Wi) constitutes  

a homogeneous Poisson process with 

intensity λ > 0. 

2. Let N be a homogeneous Poisson 

process with intensity λ and arrival times 

0 ≤ T1 ≤ T2 ≤ · · ·. Then N has 

representation  and (Ti) has representation  for 

an  i.i.d           exponential Exp(λ) sequence 

(Wi). 

We start with a renewal sequence (Tn) and 

set T0 = 0 , for convenience Recall the 

defining properties of a Poisson process from 

Definition The property N(0) = 0  a.s. follows 

since W1 > 0  a.s. By construction, a path 

(N(t, ω))t≥0 assumes the value i in [Ti, Ti+1) 

and jumps at Ti+1 to level  i + 1.  

Next we verify that N(t) is Pois(λt) 

distributed. The crucial relationship is given 

by 

 

{N(t) = n} = {Tn ≤ t < Tn+1}, n≥ 0          (29)  

Since Tn = W1 +· · ·+Wn is the sum of n 

i.i.d  Exp(λ) random variables it is a well-

known property that Tn has a gamma Γ(n, λ) 

distribution10 for  n ≥ 1: 

 

P(    )     
   ∑  

(  ) 

  
    

   

   

                                                                   (  ) 
        Hence  

P( ( )   )   (    )  

 (      )   
   (  )

 

  
                         (31) 

 

This proves the Poisson property of N(t). 

Now we switch to the independent stationary 

increment property. We use a direct ―brute 

force‖ method to prove this property. 

Since the case of arbitrarily many 

increments becomes more involved, we focus 

on the case of two increments in order to 

illustrate the method. The general case is 

analogous but requires some bookkeeping. 

We focus on the adjacent increments 

 

N(t) = N(0, t] and N(t, t + h] for t, h > 0 (32) 

 

We have to show that for any k, l ∈ N0 

 

      (t, t + h) = P(N(t) = k ,N(t, t + h]=l)   

                                                                   (33) 

 

= P(N(t) = k) P(N(t, t + h] = l)                 (34) 

 

= P(N(t) = k) P(N(h) = l)                         (35) 

 

=    (   )
(  )  (  ) 

     
                                   (36) 

 

We start with the case l = 0, k ≥ 1 ;  the 

case l = k = 0 being trivial. We make use of 

the relation 

 

{N(t) = k ,N(t, t + h] = l} = {N(t) = k ,N(t + 

h) = k + l} .                                          (37) 
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       (t, t + h) = P( Tk ≤ t < Tk+1 , Tk ≤ t 

+h < Tk+1)                                                (38) 

 

= P(Tk ≤ t , t +h <  Tk + Wk+1)               (39) 

 

Now we can use the facts that Tk is Γ(k, λ) 

distributed with density λk 

 

                (   ) ⁄   And  Wk+1  is 

Exp(λ) distributed with density           
        (t, t + h) 

=

∫      
 

 

 (  )   

(   ) 
∫      
 

     
                                                  (  ) 

 

=∫      
 

 

 (  )   

(   ) 
   (     )                                                                                

(41) 

 

=

   (   ) 
(  ) 

  
                                                                                                                  (  ) 

For  l ≥ 1  we use another conditioning 

argument and :        (t, t + h) 

 

= P(Tk ≤  t <  Tk+1  ,  Tk+l  ≤  t +h <  

Tk+l+1)                                                     (43) 

 

= E[I *             +                                (44) 

  

P(Tk+l − Tk+1  ≤ t + h − Tk+1 <  Tk+l+1 − 

Tk+1 | Tk , Tk+1)]                                   (45)  

 

Let   ̀  be an independent copy of  N, i.e., 

 ̀   N. Appealing to the independence of 

Tk+1 and     (Tk+l − Tk+1, Tk+l+1 − Tk+1), 

we see that 

 

       (t, t + h)                                     (46) 

 

= E[I *             + P( ̀ ( t+h- Tk+1  )  

=   l-1    Tk+1)]                                       (47) 

  

=∫      
 

 

 (  )   

(   ) 
∫      
     

   
 ( ̀ (   

        )  
   )                              (  ) 

 

=

∫      
 

 

 (  )   

(   ) 

∫      
     

   
   (       )

( (       ))   

(   ) 
    

 

                          

(49) 

 

=

∫    (   ) 
 

 
∫
 (  )   

(   ) 

 

 
  ∫

 (  )   

(   ) 
  

 

 

 

                                                                            (  ) 

                       

    (   ) 
(  ) 

  

(  ) 

  
         (  )                                                                                                (  ) 

 

it also follows that  P(N(t) = k ,N(t, t + h] 

= l) = P(N(t) = k) P(N(h) = l) . If I have 

enough patience for finitely many increments 

of  N. [Yuliya, 2016], [Yuliya & Georgiy 

2017], [Thomas, 2006]. 

Consider a homogeneous Poisson process 

with arrival times 0 ≤ T1 ≤ T2 ≤ · · · and 

intensity λ > 0. We need to show that there 

exist i.i.d exponential Exp(λ) random 

variables Wi  such that  Tn = W1 + · · · +Wn ,  

i.e.,  we need to show that, for any 0 ≤ x1 ≤ x2 

≤ · · · .. ≤ xn ,  n ≥ 1, 

 

P(T1 ≤ x1 … Tn≤ xn)                               (52) 

  

= p ( W1 ≤ x1 … W1 + … + Wn≤ xn )    (53) 

 

 ∫       
  

     

 ∫       
     

    

  

∫       
            

    
          

(54) 

 

The verification of this relation is left as an 

exercise. Hint: It is useful to exploit the 

relationship 

 

{T1 ≤ x1 , . . . , Tn ≤ xn } = { N(x1) ≥ 1, 

N(xn) ≥ n                                                (55)                               

 

for  0 ≤ x1 ≤ · · · ≤ xn, n ≥ 1 . 

 

An important consequence of Theorem is 

that the inter-arrival times 

 

Wi = Ti − Ti−1, i≥ 1                             (56)  
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of a homogeneous Poisson process with 

intensity λ are i.i.d  Exp(λ). In particular, Ti < 

Ti+1 a.s. for  i ≥ 1, i.e., with probability 1 a 

homogeneous Poisson process does not have 

jump sizes larger than 1. 

Since by the strong law of large numbers 

Tn/n a→.s.  EW1 = λ−1 > 0, we may also 

conclude that Tn grows roughly like n/λ, and 

therefore there are no limit points in the 

sequence (Tn) at any finite instant of time. 

This means that the values N(t) of a 

homogeneous Poisson process are finite on 

any finite time interval [0, t]. The Poisson 

process has many amazing properties. One of 

them is the following phenomenon which 

runs in the literature under the name 

inspection paradox [Thomas, 2006],                

The inspection paradox: 

Assume that you study claims which arrive 

in the portfolio according to a homogeneous 

Poisson process N with intensity λ. We have 

learned that the inter-arrival times Wn = Tn − 

Tn−1,   n ≥ 1, with   T0 = 0, constitute an i.i.d 

Exp(λ) sequence. Observe the portfolio at a 

fixed instant of time t. The last claim arrived 

at time TN(t) and the next claim will arrive at 

time TN(t)+1. Three questions arise quite 

naturally: 

(1) What is the distribution of B(t) = 

t−TN(t), i.e., the length of the period 

(TN(t), t] since the last claim occurred? 

(2) What is the distribution of F(t) = 

TN(t)+1−t, i.e., the length of the period (t, 

TN(t)+1] until the next claim arrives? 

(3) What can be said about the joint 

distribution of B(t) and F(t)? 

The quantity B(t) is often referred to as 

backward recurrence time or age, whereas 

F(t) is called forward recurrence time, excess 

life or residual life. Intuitively, since t lies 

somewhere between two claim arrivals and 

since the inter-arrival times are i.i.d  Exp(λ) 

we would perhaps expect that     P(B(t) ≤ x1) 

< 1 −           , x1 < t , and  P(F(t) ≤ x2) < 1 

−           , x2 > 0.      

 Howeve these conjectures are not 

confirmed by calculation of the joint 

distribution function of B(t) and F(t) for x1, 

x2 ≥ 0: 

      ( )  ( ) (x1, x2) = P(B(t) ≤ x1 , F(t) ≤ 

x2) .                                                         (57) 

Since B(t) ≤ t  a.s. we consider the cases  

x1 < t  and  x1 ≥ t separately. We observe for 

 x1 < t and x2 > 0, 

 

{ B(t) ≤  x1 } ={ t − x1 ≤   ( ) ≤ t } =  { N(t 

− x1, t] ≥ 1 }                                             (58) 

 

{ F(t) ≤ x2} = { t <   ( )   ≤ t + x2 } = { 

N(t, t + x2] ≥ 1 }                                         (59) 

 

Hence, by the independent stationary 

increments of N 
  ( )  ( ) (x1, x2) = P ( N(t − x1, t ] ≥ 1 , 

N(t, t + x2] ≥ 1)                                          (60) 

 

= P (N(t − x1, t] ≥ 1) P (N(t, t + x2] ≥ 

1)                                                                (61) 

 

= ( 1 −         ) - (  1 −          )          (62) 

 

An analogous calculation for  x1 ≥ t,  x2 ≥ 

0 

 

  ( )  ( ) (x1, x2) = [ ( 1 –

         )  ,   )(  ) +   ,   )(  ) - (  1 – 

         ) 
 

Hence B(t) and F(t) are independent, F(t) 

is Exp(λ) distributed and B(t) has a truncated 

exponential distribution with a jump at t: 

 

P(B(t) ≤ x1) = 1 −          ,  x1 < t ,  and  

P(B(t) = t) =         .                                 (63) 

 

This means in particular that the forward 

recurrence time F(t) has the same Exp(λ) 

distribution as the inter-arrival times Wi of the 

Poisson process N. 

This property is closely related to the 

forgetfulness property of the exponential 

distribution: P (W1 > x+ y | W1 > x) = P ( W1 

> y) ,  x,y ≥ 0 , 

(Verify the correctness of this relation.) 

and is also reflected in the independent 

increment property of the Poisson property. It 

is interesting to observe that 

 

lim P(B(t) ≤ x1) = 1 −          , x1 > 0                  

                                                              (64) 

t→∞      
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Thus, in an ―asymptotic― sense, both B(t) 

and F(t) become independent and are 

exponentially distributed with parameter λ. 

[Thomas,2006], [Yuliya,2016] 

 
The Distribution of the Inter-Arrival 

Times: 

By virtue of Proposition, an 

inhomogeneous Poisson process N with mean 

value function μ can be interpreted as a time 

changed standard homogeneous  ̀ : 

 

(N(t))t ≥0   ( ̀ (μ(t)))t ≥ 0                        (65) 

 

In particular, let (    ̂ ) be the arrival 

sequence of  ̀  and μ be increasing and 

continuous. Then the inverse    exists and 

 

N( )̀ _(t) = #{ i ≥ 1 :  ̀i ≤ μ(t) } = #{ i ≥ 1 : 

    ( ̀i) ≤ t }, t≥ 0 ,                                  (66) 

 

is a representation of N in the sense of 

identity of the finite-dimensional 

distributions, i.e., N   ̀ . Therefore and by 

virtue of Theorem the arrival times of an 

inhomogeneous Poisson process with mean 

value function μ have representation: 

 

Tn =     ( ̀n)  ,      ̀n  =  ̀1  + · · · +  ̀n, 

n ≥ 1        ̀i   i.i.d Exp(1).                        (67) 

 

Joint distribution of arrival/inter-arrival 

times : 

Assume N is a Poisson process on [0,∞) 

with a continuous a.e. positive intensity 

function λ. Then the following statements 

hold. 

The vector of the arrival times (T1 … Tn) 

has density  

 

         (         )  
    (  )  ∏  (  )  *         +

 
                (68) 

 

The vector of inter-arrival times (W1, . . 

.,Wn) = (T1, T2 − T1, . . . , Tn − Tn−1) has 

density 

         (         )

     (         )  ∏ (  

 

   

       )          
                                     (  )  

 

Since the intensity function λ is a.e. 

positive and continuous, μ(t) = ∫  ( )
 

 
  ds is 

increasing and     exists. Moreover, μ is 

differentiable, and   ̀ (t) = λ(t). We make use 

of these two facts in what follows: 

We start with a standard homogeneous 

Poisson process. Then its arrivals  ̀n  have 

representation   ̀n  = =  ̀1  + · · · +  ̀n for 

an  i.i.d  standard exponential sequence ( ̀i). 

The joint density of ( ̀1  + · · · +  ̀n) is 

obtained from the joint density of  (  ̀1  + ·· · 

+  ̀n) via the transformation 

(y1 ,…… yn ) 
 
  (y1 , y1+y2 , ….y1,….+……+ 

yn)                                                            (70) 

 

(z1 ,…… zn ) 
   
→   (z1 , z2 -z1… zn – zn-1) (71) 

 

Note that det (∂S(y)/∂y) = 1. Standard 

techniques for density transformations yield 

for 0 < x1 < xn 

  ̃      ̃   
(        )  

   ̃      ̃   
(                   

  )                                                      (72) 
 

    (          )        (            )  
                       =             

Since     exists we conclude that for 0 < 

x1 < · · · < xn, 

 

P( T1 ≤ x1 ………… Tn≤ xn ) = P 

(   ( ̃ )          
  ( ̃  )     )    (73) 

 

= P 

( ̃   (  )      ̃   (   ))               (  ) 
                   

 ∫  ∫   ̃      ̃   
(     )

 (  )

 

           (  )

 (  )
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 ∫   ∫        *       +

 (  )

  

               (  )

 (  )

 

 

 

Taking partial derivatives with respect to 

the variables x1, . . . , xn and noticing that  ̀ 

(xi) = λ(xi) , we obtain the desired density . 

 

Relation follows by an application of the 

above transformations S and        from the 

density of (T1, . . . , Tn): 

 

fW1,...,Wn(w1, . . ., wn) = fT1,...,Tn (w1, 

w1 + w2, . . . , w1 + · · · + wn) .               (77) 

 

we may conclude that the joint density of 

W1, . . . , Wn can be written as the product of 

the densities of the Wi‘s if and only if λ(·) ≡ λ 

for some positive constant λ. This means 

that only in the case of a homogeneous 

Poisson process are the inter-arrival times  

W1 … Wn independent (and identically 

distributed). This fact is another property 

which distinguishes the homogeneous Poisson 

process within the class of all Poisson 

processes on [0 ,∞) . 

From previous results of gauge theory, 

probability theory, and random processes, it is 

natural to study non-life insurance based on 

knowledge of these theories. In particular, it 

has investigated the theory of stochastic 

processes and the theory of applied 

probability, and thus it seems appropriate to 

use these tools for example Martingale and 

Markov process theory is avoided as much as 

possible as well as many analytical tools such 

as Laplace-Stilt transformations, measuring 

margins and instead, focusing on a more 

probabilistic understanding. Intuitive risk and 

lump sum claim operations and its basic 

random structure. Random walk is one of the 

simplest stochastic processes and in many 

cases allows explicit calculations of the 

distributions and their properties. If one walks 

this way, then one is essentially walking 

along the path of regeneration and making the 

point. However, only some basic tools such as 

the main theory of regeneration will be 

explained on an informal level. Point process 

theory will be used indirectly in many places, 

in particular, in the section on Poisson's 

process, the idea of stochastic measure will be 

mentioned but it is not necessary, since 

theoretical arguments can sometimes be 

replaced by intuitive ones. 

Conclusions In this paper, we consider 

collective risk models risk theory, the Poisson 

process which is the most common claim 

number process, and the cautery processes 

obtained by analyzing risk management data 

using probability distributions, where the 

results obtained through different algorithms 

are compatible with Each other in their basic 

features, and in this way we were able to 

compile and direct them that differs from 

what is common in other research that reflects 

different views on the method of outputs and 

analysis of results, as these results allow us to 

describe the similarities and differences 

through the relationship between 

homogeneous and heterogeneous 

mathematical chains. The results of the 

analysis also showed the comparison between 

the Poisson process density function and 

Markov intensity, and the relationships 

between the homogeneous and heterogeneous 

Poisson process, and the homogeneous 

Poisson process as the arrival time 

distribution process, its applications and 

results. 
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