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AnOmayin. € 6acamo KHue, 00CniOxiceHb ma OOCHIOHUYLKUX pOOIm, SKI NOKA3VIOMb OesiKi OCHOBHI BUCHOBKU 3
MaAmemMamuKkyu CMpAxy8aHHs, He NO8'A3AH020 (3 JHCUMMAM, 3d OONOMOZ2OK MeEOPeMmUYHUX CMpAxo8ux onepayii.
Cmpaxosa cnpasa Oyna onucana Ax eunaokosuti i besnepepenuil npoyec uacy. Lle oae binvwi cknaduuii noenao Ha
MaAmemMamuxy CmMpaxy8auHs i 0036074€ 3ACMOCOBYBAMU OCMAHHI pe3yibmamu Mmeopii CMoXacmuyHux npoyecis.
Ilepesasicaioua oymka w000 cmpaxogoi mamemamury (APUHAUMHI ceped MamemMamuxie) nousieac 8 momy, wo ye
documbs cyxa i HYOHA CNpasa, OCKINbKU IHMEPnpemy€emsvcs auule Ha Mums i HAcnpagoi He MAe Yikagux CMpyKmyp.
Hixmo mne noeumen cnputivamu yio mMoOuKy 30py AK HOMIHAAbHY, i YiKAGO npayoeamu 3 MamemamudHumu
cmpykmypamu 015 CmMpaxyeanhs, He nog'szanoeo i3 dcummsim. Moocaugicms ompumanus abCcorOmHO20 MOYHO20
BHAHHA ICHYE JUme Y GUNAOKAX, NOG SI3AHUX i3 GUSHAYEHHAM QI3UYHUX napamempisé (po3mipie, mMacu, Cuiu moujo)
00 ’ekmi6 0mouyI0u020 cepedosuya ma 3a yMogU GUKOPUCIAHHS CKIAOHUX 1AO0OPAMOPHUX MEMOOI8. Y NOBCAKOEHHOMY
oHrcummi 3HAHHA WOO00 MAUOYMHBLO2O, AKe 3HAX0OUMbCA NI0 8NAUBOM 3HAUHOI KLIbKOCMI (hakmopis, wjo He niooarmscs
8UBUEHHIO MA nepedbaueHHI0, DA3YIMbCA HA OCHO8I NPUOIUSHUX OYIHOK, WO I (QOPMYE NOHAMMS HEeBU3HAYEHOCI.
Toorc nomounull cyeHapii Makodic Modce Oymu Yikasum 01 mux, Xmo He 0008 A3K080 X0ue NpO8ecmu peumy c8020
acumms y cmpaxosii komnawii. L[i npoyecu 3acmocoeani y cmammi, wob npeocmasumu 6aeamo iHwux obaacmet
NPUKNAOHOT meopii UMogipHOCMell, MAKUX K Pe2eHepamueHa meopis, GUPIGHIOBAHHSA, CIOXACMUYHI Mepedici, meopisi
MOYKOBUX npoyecis, 3acmocysants pigHsaHb I[lyaccoua, pecenepamugui npoyecu. [le 8i0nogioOHUll cmoxacmuyHuil
npoyec HA3UBAIOMb OPOYHIBCLKUM PYXOM, AKUL 3AUMAEMbCA MOOETIOBAHHAM GUMO2, WO HAOX00AMb 00 CMPAX08020
Oi3Hecy, AKUN NOKA3YE, CKIIbKU CMpaxoeoi npemii cii0 cnaamumu, wo6 YHUKHYMU OAHKpYymcmeda (3Hulyenis)
CMpaxoeoi KoMnauii, Mu MaemMo HaA y6asi HAOIp KOHmMpaxmie abo nouicie 0as NOOIOHUX PU3UKIE, MAKUX 5K
aBMoOCMpPaxysanHs, GUKPAOEeHHsL HCUMAA abo CMPAaxy8anHs wKoou 8i0 800U 8 0OHOCIMEUHUX OYOUHKAX.

Kniouosi cnosa: meopis pusuxy, npoyecu Ilyaccona; npoyec uwucia npemensii, oonopionuti npoyec Ilyaccona;
modenv Kpamepa-Jlynobepea, 00Hopioni; HeoOHOpiOHI; npoyecu Mapkoea, uac npubymms.

@opmynu: 77; puc.: 0; mabn.: 0; 6ion.: 5.

Annotation. There are many books, studies and research papers that show some basic findings in the mathematics
of non-life insurance through the use of theoretical insurance operations. The insurance business has been described as
a random and continuous process of time. This gives a more complex view of insurance mathematics and allows one to
apply recent results from the theory of stochastic processes. The prevailing opinion about insurance mathematics (at
least among mathematicians) is that it is rather dry and tedious matter because one interprets only momentarily and
does not actually have any interesting structures. Nobody should take this view at face value and it is fun to work with
mathematical structures for non-life insurance. The possibility of obtaining absolutely accurate knowledge exists only
in cases involving the determination of physical parameters of size, mass, force, etc.) of environmental objects and
subject to the use of complex laboratory methods. In everyday life, knowledge about the future, which is influenced by a
large number of factors that cannot be studied and predicted, is based on approximate estimates, which forms the
concept of uncertainty. So the current script can also be interesting for those who don't necessarily want to spend the
rest of their lives with an insurance company. These processes lie in this paper to introduce many other fields of applied
probability theory, such as regenerative theory, alignment, stochastic networks, point process theory, application such
as Poisson, Poisson's compound, and regenerative processes. Where the appropriate stochastic process has been called
the Brownian movement, which deals with the modeling of claims that reach the insurance business, which advises on
how much insurance premium should be paid to avoid bankruptcy (destruction) of the insurance company by this we
mean a set of contracts or policies for similar risks such as auto insurance Certain cars, home theft or water damage
insurance in single-family homes.
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Introduction. Due to the numerous
research and theories in actuarial mathematics
having a very good background in
measurement theory, probability theory, and
stochastic processes, it is natural to present
and clarify about non-life insurance based on
knowledge of these theories. In particular, the
stochastic process theory and applied
probability theory (of which insurance
mathematics is a part) have made significant
progress over the past 50 years, and in this
article 1 highlight presenting some of the
fundamental findings in the mathematics of
non-life insurance using theoretical processes.
It includes the basic model of group risk
theory, combining claims volumes and claims
arrival times. The claim number process, i.e.
the process of calculating claims arrival times,
was one of the main things | focused on.
Three main operations of claim number are
presented: Poisson process, regeneration
process, mixed Poisson process, generalized
Poisson process or regeneration theory, where
these topics are related to reach an
understanding of the essay topic, and the total
claim amount operations and validity of the
basic structure, where random walk is one of
the simplest processes. Randomization and in
many cases it allows an explicit calculation of
the distributions and their properties. And I'll
just explain some basic tools like the major
revamp on an informal level. Point process
theory will be used indirectly in many places,
in particular, in the section on Poisson
process, and the idea of stochastic scaling will
be mentioned.

Literature review. There is a lot of
research and studies presented on this topic,
for example Ole Hesselager's 1998 notes and
exercises for the Basic Course on Non-Life
Insurance at the Actuarial Mathematics
Laboratory in Copenhagen, and A very
interesting person in economic theory and
financial mathematics the Russian
mathematician Leonid Kantorovich, was
specialist in functional analysis In 1938, and
was also the book Side Risk by the writer
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Happy Harry. Applied Stochastic Process
Theory.

But through this paper, | will use risk
analysis and inference with the applications
used through it to find the best results in the
field of insurance, special actuarial analysis,
and mathematical series study.

Aims. The main objective of this paper is
to clarify standard stochastic models for non-
life insurance mathematics, to address risks,

to clarify the relationship  between
mathematical chains and actuarial
mathematics for non-life insurance,

probability theory, random processes, applied
stochastic processes, methods of their
application, and how to prove theories related
to them.

We provide an overview of the definition
of risk theory, the Poisson process which is
the most common claim number process, the
homogeneous Poisson process, the Kramer-
Lundberg model where the most common
Poisson process corresponds, the Kramer-
Lundberg model, the Poisson homogeneous
process in insurance mathematics, Markov
processes, and the relationship between The
Poisson process density function and Markov
density, the relationships between the
homogeneous and heterogeneous Poisson
process, the homogeneous Poisson process as
a regeneration process as arrival times, the
distribution of arrival times, its applications
and their results.

Results. In my research was used risk
analysis and its applications to find the results
of actuarial mathematical chains, using the
Poisson process to find the relationship
between the chains processes , and used in the
study of random walking, insurance, and
meta-analysis, and to find the relationship
between homogeneous and heterogeneous
chains and their applications.

The Basic Model. Risk theory is a
synonym for non-life insurance mathematics,
which deals with the modeling of claims that
arrive in an insurance business ,and which
gives advice on how much premium has to be
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charged in order to avoid bankruptcy (ruin) of
the insurance company.

One of Lundberg’s main contributions is
the introduction of a simple mode which is
capable of describing the basic dynamics of a
homogeneous insurance portfolio.

By this we mean a portfolio of contracts or
policies for similar risks such as car insurance
for a particular kind of car, insurance against
theft in households or insurance against water
damage of one-family homes [Thomas, 2006].

There are three assumptions in the model:

Claims happen at the times Ti satisfying
(0<T1<T2<---) We call them claim
arrivals or claim times or claim arrival times
or, simply, arrivals.

The ith claim arriving at time ( Ti )causes
the claim size or claim severity ( Xi ) . The
sequence (Xi) constitutes an i.i.d sequence of
non-negative random variables.

The claim size process (Xi) and the claim
arrival process (Ti) are mutually independent.

The i.i.d property of the claim sizes, Xi,
reflects the fact that there is a homogeneous
probabilistic structure in the portfolio. The
assumption that claim sizes and claim times
be independent is very natural from an
intuitive point of view. But the independence
of claim sizes and claim arrivals also makes
the life of the mathematician much easier, i.e.,
this assumption is made for mathematical
convenience and tractability of the model.

Now we can define the claim number
process

Nt)=#{i>1:Ti<t},t>0 1)

i.e., N = (N(t)) t=0 is a counting process on
[0,00): N(t) is the number of the claims which
occurred by time t.

The object of main interest from the point
of view of an insurance company is the total
claim amount process or aggregate claim
amount process:

N() o
St = ZXi - le' log (T,  t=0 (2)
The process S = (S(t))t>0 is a random

partial sum process which refers to the fact
that the deterministic index n of the partial
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sums Sn = X1 + ......... + Xn is replaced by
the random variables N(t):

S(t) = X1 +...+ XN(t) = SN(t), t=0 (3)

It is also often called a compound (sum)
process. We will observe that the total claim
amount process S shares various properties
with the partial sum process.

For example, asymptotic properties such as
the central limit theorem and the strong law of
large numbers are analogous for the two
processes. [Thomas, 2006], [Yuliya, 2016].

The Poisson Process: we consider the most
common claim number process: the Poisson
process. It has very desirable theoretical
properties. For example, one can derive its
finite-dimensional  distributions  explicitly.
The Poisson process has a long tradition in
applied probability and stochastic process
theory. In his 1903 thesis, Fillip Lundberg
already exploited it as a model for the claim
number process N. Later on in the 1930s,
Harald Cramer, the famous Swedish
statistician and  probability, extensively
developed collective risk theory by using the
total claim amount process S with arrivals Ti
which are generated by a Poisson process. For
historical reasons, but also since it has very
attractive  Mathematical  properties, the
Poisson process plays a central role in
insurance mathematics [Thomas, 2006].

Below we will give a definition of the
Poisson process, and for this purpose we now
introduce some notation. For any real-valued
function f on [0,00) we write :

f(s, t] =f(t) —f(s),0<s<t<oo. 4)
Recall that an integer-valued random
variable M is said to have a Poisson

distribution with parameter 4 > 0 (M ~
Pois(4)) if it has distribution :

Ak

PM=K)=e*,

K =012 (5)

We say that the random variable M = 0
a.s. has a Pois(0) distribution. Now we are
ready to define the Poisson process.
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A stochastic process N = (N(t))t>0 is said
to be a Poisson process if the following
conditions hold:

1. The process starts at zero: N(0) =0 a.s.

2. The process has independent
increments: forany ti,i=0,...n, andn>1

such that 0 = t0 < t1 < - - - < tn, the
increments N(ti—1, ti], i =1, ..., n, are

mutually independent.

3. There exists a non-decreasing right-
continuous function y : [0,00) —[0,0)

with #(0) = 0 such that the increments
N(s, t] for 0 <s <t < o have a Poisson
distribution Pois (u(s, t]). We call x the mean
value function of N.

4. The sample paths (N(z, w))t>0 of the
process N are right-continuous

for t >0 and have limits from the left for t
> 0. We say that N has sample paths.
[Thomas,2006]

We know that a Poisson random variable
M has the rare property that

A=EM =var(M), (6)

The definition of the Poisson process
essentially says that, in order to determine the
distribution of the Poisson process N, it
suffices to know its mean value function. The
mean value function x can be considered as
an inner clock or operational time of the
counting process N. Depending on the
magnitude of u(s, t] in the interval (s, t], s <t,
it determines how large the random increment
N(s, t] is. [Thomas,2006],[Yuliya,2016]

Since N(0) =0 a.s. and u(0) =0,

N(t) = N(©) — N(0) = N(O, t] ~ Pois(u(0, t])
= Pois(u(t)) (7

We know that the distribution of a
stochastic process is determined by its finite-
dimensional  distributions.  The finite-
dimensional distributions of a Poisson process
have a rather simple structure: for 0 =10 <tl
<:---<fin<o,

(N(t1),N(t2), . . ., N(tn)) =
N(t1),N(t1) + N(t1, t2] N(t1) + N(t1, t2] +
N(t2, t3], ... +X N(ti — 1, ti] (8)
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the random variables on the right-hand side
is Poisson distributed. The independent
increment property makes it easy to work
with the finite-dimensional distributions of N:
for any integers ki>0,i=1,...,n,

P(N(t1) = k1, N(t2) =k1 + k2, ..., N(tn)
=kl+---+kn) 9)

= P(N(t1) = k1 , N(t1, t2] = k2, . . .
,N(tn—1, tn] = kn) (10)

k1
— e‘”(tl) (,Ll(tl)) e—,u(tl,tZ] (,Ll(tl, tZ])kZ

g—n(tn—1,tn] ((tn=1,tnD"
kn!

(11)

k1
= g~ H(n) M e —H(tLr2] (u(e1, t2])*?
kl! k2! T

(#(tn_l’tn])kn (12)
kn!

The Homogeneous Poisson Process, the
Cramer-Lundberg Model

The most popular Poisson process
corresponds to the case of a linear mean value
function w:

u)y=41t,t>0, (13)

for some A > 0. A process with such a
mean value function is said to be
homogeneous,

Inhomogeneous otherwise. The quantity 4
is the intensity or rate of the homogeneous
Poisson process. If 42 = 1, N is called
standard homogeneous Poisson process.

More generally, we say that N has an
intensity function or rate function A if u is
absolutely continuous, i.e., forany s <t the
increment u(s, t] has representation

u(s,tl= A dy, s<t, (14
for some non-negative measurable function
A. A particular consequence is that x is a
continuous function.
We mentioned that p can be interpreted as
operational time or inner clock of the Poisson
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process. If N
linearly

iIs homogeneous, time evolves

u(s, t] =u(s+h,t+h]foranyh>0and0
<s<t<om. (15)

A homogeneous Poisson process with
intensity 4 has :

1- has sample paths, 2- starts at zero, 3-
has independent and stationary increments, 4-
N(t) is Pois(Ar) distributed for every t > 0.

Tationarity of the increments refers to the
fact that forany 0 <s <tand h > 0,

N(s, t] 2 N(s + h, t + h] ~ Pois(. (t — s)),
(16)

The Poisson parameter of an increment
only depends on the length of the interval ,A
process on [0,) called a Levy process. The
homogeneous Poisson process is one of the
prime examples of Levy processes. [Thomas,
2006], [Yuliya, 2016], [Yuliya & Georgiy
2017].

The Cramer-Lundberg model :

The homogeneous Poisson process plays a
major role in insurance mathematics. If we
specify the claim number process as a
homogeneous Poisson process, the resulting
model which combines claim sizes and claim
arrivals is called Cramer-Lundberg model :

* Claims happen at the arrival times 0 <
T/ <T2 <--- of a homogeneous Poisson
process N(t) =#{i>1:Ti<t}, t>0.

* The ith claim arriving at time Ti causes
the claim size Xi. The sequence (Xi)

constitutes an i.i.d  sequence of non-
negative random variables.

* The sequences (Ti) and (Xi) are
independent. In particular, N and (Xi) are
independent.

The total claim amount process S in the
Cramer-Lundberg model is also called a
compound Poisson process. [Thomas, 2006],
[Yuliya, 2016], [Yuliya & Georgiy 2017].

The Markov Property

Poisson processes constitute one particular
class of Markov processes on [0,o0) with state
space NO = {0, 1, . . .}. This is a simple
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consequence of the independent increment
property. It is left as an exercise to verify the
Markov property, i.e., forany0=t0 <tl <--
- < tn, and non-decreasing natural numbers

Ki=0, i=1,...,n n=2, (17)
P(N(tn) = kn [ N(t1) =KL, ..., N(tn—1) =
kn—1) (18)

=P(N(tn) =kn | N(tn—1) = kn-1)

Marko process theory does not play a
prominent role on modern life insurance
mathematics, where Markov models are
fundamental.

However, the intensity function of a
Poisson process N has a nice interpretation as
the intensity function of the Markov process
N. Before we make this statement precise,
recall that the quantities

Pk.k+h(s, t) = P(N(t) =k + h | N(s) = k) =
P(N(t) — N(s) =h), (19)

0<s<t, kheNO,

are called the transition probabilities of the
Markov process N with state space NO. Since
a.e. path (N(¢, ®))t>0 increases, only needs to
consider transitions of the Markov process N
from k to k+h for h > 0. The transition
probabilities are closely related to the
intensities which are given as the limits.
[Thomas, 2006], [Yuliya, 2016], [Yuliya &
Georgiy 2017].

A +n(6)
t,t+s
— lim P ke+h( ) (20)
s—0 S

Relation of the intensity function of the
Poisson process and its Markov intensities:

Consider a Poisson process N = (N(t))t>0
which has a continuous intensity function 4 on
[0,00). Then, for k >0,

A(t)

A ge+n(t) = {O yoh=1

if h >1
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the intensity function A(t) of the Poisson
process N is nothing but the intensity of the
Markov process N for the transition from
state k to state k + 1. The intensity function
of a Markov process is a quantitative measure
of the likelihood that the Markov process N
jumps in a small time interval. a Poisson
process with continuous intensity function A
has jump sizes larger than 1. Indeed, consider
the probability that N has a jump greater than
1in the interval (t, t + s] forsome t>0,s>
0:

P(N({t, t+s]>2)=1—-P(N(t,t+s] =0)
—P(N(t,t+s]=1) (21)

=1- ep_(t,t+s] _ u(t’ t+ S] eu(t,t+S] (22)

Since A is continuous,

ute s ] = A0 dy = sA@®) (1+
0o(1)) - 0 ,ass|O0 (23)

Moreover, a Taylor expansion yields for X
— O that e* = 1+x + 0(X).
Thus , we may conclude, as s | 0,

P(N(t, t +s] >2) = o(u(t, t +s]) =o(s) (24)
It is easily seen that

P(N(t, t+5s] = 1)=2(t) s (1 + 0o(1)) (25)
Poisson process N with continuous

intensity function A is very unlikely to have
jump sizes larger than 1. [Thomas, 2006],
[Yuliya, 2016], [Yuliya & Georgiy 2017],
[Philip, 2004].

Relations Between the Homogeneous and
the Inhomogeneous Poisson Process :

The homogeneous and the inhomogeneous
Poisson processes are very closely related: in
a deterministic time change transforms a
homogeneous Poisson process into an
inhomogeneous Poisson process, and vice
versa.

Let N be a Poisson process on [0,00) with
mean value function x. We start with a
standard homogeneous Poisson process N
and define

N (1) = _ N(u()), t=0 (26)
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It is not difficult to see that N is again a
Poisson process on [0,:). (Verify

this! Notice that the cadlag property of u is
used to ensure the cadlag property of the
sample paths N (t, ).) Since

N®=EN®)=EN () = u), =0 (27)

and since the distribution of the Poisson
process N is determined by its mean value
function 7, it follows that N 2 N, where 2 |
refers to equality of the finite-dimensional
distributions of the two processes. Hence the
processes N and N are not distinguishable
from a probabilistic point of view, in the
sense of Kolmogorov’s consistency theorem.
Moreover, the sample paths of N are cadlag as
required in the definition of the Poisson
process.

Now assume that N has a continuous and
increasing mean value function wx. This
property is satisfied if N has an a.e. positive
intensity function A.

Then the inverse u~! of u exists. N (t) =
N(u~1(t)) is a standard homogeneous Poisson
process on [0,00) if  limi e, u(t) = oo,
[Thomas, 2006], [Yuliya, 2016].

The Poisson process under change of time :

Let x be the mean value function of a
Poisson process N and N be a standard
homogeneous Poisson process. Then the
following statements hold:

The process (N (u(t)))t>0 is Poisson with
mean value function u.

If u is continuous, increasing and
lim;_,o u(t) = oo then (N(u—1(t)) t>0
is a standard homogeneous

process.

This result, which immediately follows
from the definition of a Poisson process,
allows one in most cases of practical interest
to switch from an inhomogeneous Poisson
process to a homogeneous one by a simple
time change. In particular,it suggests a
straightforward way of simulating sample
paths of an inhomogeneous Poisson process N
from the paths of a homogeneous Poisson
process.

In an insurance context, one will usually be
faced with inhomogeneous claim arrival

Poisson



ISSN (Print) 2307-6968, ISSN (Online) 2663-2209
Bueni 3anucku YHiBepcurery «KPOK» Ne3 (59), 2020

processes. The above theory allows one to
make an “operational time change” to a
homogeneous model for which the theory is
more accessible. [Yuliya, 2016], [Yuliya &
Georgiy 2017], [Thomas, 2006].

The Homogeneous Poisson Process as a
Renewal Process :

In this we study the sequence of the arrival
times 0 <T1 <T2 < - - - of a homogeneous
Poisson process with intensity A > 0. It is our
aim to find a constructive way for
determining the sequence of arrivals, which in
turn can be used as an alternative definition of
the homogeneous Poisson process. This
characterization is useful for studying the path
properties of the Poisson process or for
simulating sample paths .

We will show that any homogeneous
Poisson process with intensity 4 > 0 has
representation

Nt =#{i>1:Ti<t},t>0,
where

Tn=W1l+---+Wn, n>1 (28)

and (Wi) is an i.i.d exponential Exp(1)
sequence. In what follows, it will be
convenient to write TO = 0. Since the
random walk (Tn) with non-negative step
sizes Wn is also referred to as renewal
sequence, a process N with representation for
a general i.i.d sequence (Wi) is called a
renewal (counting) process.

The process N given with an i.i.d
exponential Exp(4) sequence (Wi) constitutes

a homogeneous Poisson process with
intensity A > 0.

2. Let N be a homogeneous Poisson
process with intensity 1 and arrival times

0 <Tl1 <T2 < - - - Then N has
representation and (Ti) has representation for
an i.i.d exponential Exp()) sequence
(Wi).

We start with a renewal sequence (Tn) and
set TO = 0 , for convenience Recall the
defining properties of a Poisson process from
Definition The property N(0) = 0 a.s. follows
since W1 > 0 a.s. By construction, a path
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(N(z, @))t>0 assumes the value i in [Ti, Ti+1)
and jumps at Ti+1 to level i+ 1.

Next we verify that N(t) is Pois(i¢)
distributed. The crucial relationship is given

by

{N(@t) =n}={Tn<t<Tn+1},n>0 (29)

Since Tn = W1 +- - -+Wn is the sum of n
i.i.d Exp(1) random variables it is a well-
known property that Tn has a gamma 7(n, 1)
distribution10 for n > 1:

n—-1
PU;Sx)=1—e41§: @0
k=0 K
0 (30)
Hence
P(IN(t) =n)=P(T, <t) —

_1y (A)K
P(Tpyr St) = e

, X =

(31)

This proves the Poisson property of N(t).
Now we switch to the independent stationary
increment property. We use a direct “brute
force” method to prove this property.

Since the case of arbitrarily many
increments becomes more involved, we focus
on the case of two increments in order to
illustrate the method. The general case is
analogous but requires some bookkeeping.
We focus on the adjacent increments

N(t) = N(0, t] and N(t, t + h] for t, h > 0 (32)
We have to show that for any k, | €NO

Qree+1(t t+0) =P(N() =k N(t, t + h]=I)

(33)
=P(N(t) = k) P(N(t, t+ h] = 1) (34)
= P(N(t) = k) P(N(h) = I) (35)
_ oAty GOF O (36)

k!'l!

We start with the case | = 0, k > 1 ; the
case | = k = 0 being trivial. We make use of
the relation

IN@®) = k N(t t + h] = I} = {N(t) = k N(t +
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P(Tk<t<Tk+l, Tk<t
(38)

Qi (L U+ h) =
+h < Tk+1)
=P(Tk <t,t+h < Tk + Wk+1) (39)
Now we can use the facts that Tk is 7'k, 1)
distributed with density Ak
xk=1 e=* /(k —1)! And Wk+1 is
Exp(’,) distributed with density Ae=**

Ak k+1 (t, t + h)

t _az A2kt oo —Ax
Jye e Jirn, A~ dxdz
_az Maz)kt

—A(t+h-2)
(k=1)! dz

— fof e
(41)

o At+h) A"
k!
For | > 1 we use another conditioning

argument and : gy p4; (t, t+h)

=P(MTk < t< Tk+l , Tk+l < t+h <
Tk+1+1) (43)
= E[”{Tkst<Tk+1st+h} (44)

P(Tk+l — Tk+1 <t+h— Tk+l < Tk+l+1 —
Tk+1 | Tk, Tk+1)] (45)

Let N be an independent copy of N, i.e.,
N 2 N. Appealing to the independence of
Tk+1and  (Tk+l — Tk+1, Tk+I+1 — Tk+1),
we see that

Qi+ (L T+ h) (46)

= E[U¢xsterkrist+hy PNV ((t+h- Tk+1 )
= I-1/ Tk+1)] (47)

_t 3y AR t+h-z o N

=[ e lzﬁft_z e ™ P(N (t+
h—z—-x)=
l—1)dxdz (48)
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t+th=z , _Ax ,—-A(t+h—z—x)
Az 1ft . Ae™™e

f()t e—Az

(49)

A(t+h—z—x))-1
1-1)!

(=1t dxdz

foe

o~ A(t+h) t A(Az)k1 h A(Ax) 1
J-0 (k—l)' d J-0 (1 1)|

(* an)!

A(t+h) o l' (50)

it alS6%bllows that P(N(t) = k N(t, t + h]

= 1) = P(N(t) = k) P(N(h) = 1) . If I have

enough patience for finitely many increments

of N. [Yuliya, 2016], [Yuliya & Georgiy
2017], [Thomas, 2006].

Consider a homogeneous Poisson process
with arrival times 0 < T1 < T2 < - - - and
intensity 4 > 0. We néd@)to show that there
exist 1.i.d exponential Exp(1) random
variables Wi such that Tn=W1 + ---+Wn,
i.e., we need to show that, for any 0 <x1 <x2
<---.<Xn, n>1,

P(T1<xI ... Tn<xn) (52)
=p(Wl<x/..Wl+ .. +Wn<xn) (53)
x2-wl

J /le—lwl f Ae—/lwz .

wi1l=0
fxn W1—~-~—wn 1

wn=0

(54)

The verification of this relation is left as an
exercise. Hint: It is useful to exploit the

relationship

{T1 <x1, , Tn<xn}={N(Xxl)>1,
N(xn) >n (55)
for 0<x1<---<xn,n>1.

An important consequence of Theorem is
that the inter-arrival times
Wi=Ti—Ti-

1,i>1 (56)
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of a homogeneous Poisson process with
intensity 4 are i.i.d Exp(1). In particular, Ti <
Ti+1 a.s. for i > 1, i.e., with probability 1 a
homogeneous Poisson process does not have
jump sizes larger than 1.

Since by the strong law of large numbers
Tn/n a—.s. EW1 = /-1 > 0, we may also
conclude that Tn grows roughly like n/A, and
therefore there are no limit points in the
sequence (Tn) at any finite instant of time.
This means that the values N(t) of a
homogeneous Poisson process are finite on
any finite time interval [0, t]. The Poisson
process has many amazing properties. One of
them is the following phenomenon which
runs in the literature under the name
inspection paradox [Thomas, 2006],

The inspection paradox:

Assume that you study claims which arrive
in the portfolio according to a homogeneous
Poisson process N with intensity 1. We have
learned that the inter-arrival times Wn = Tn —
Tn—-1, n>1, with TO =0, constitute an i.i.d
Exp(4) sequence. Observe the portfolio at a
fixed instant of time t. The last claim arrived
at time TN(t) and the next claim will arrive at
time TN(t)+1. Three questions arise quite
naturally:

(1) What is the distribution of B(t) =
t—TN(t), i.e., the length of the period
(TN(t), t] since the last claim occurred?

(2) What is the distribution of F(t) =
TN(t)+1-t, i.e., the length of the period (t,
TN(t)+1] until the next claim arrives?

(3) What can be said about the joint
distribution of B(t) and F(t)?

The quantity B(t) is often referred to as
backward recurrence time or age, whereas
F(t) is called forward recurrence time, excess
life or residual life. Intuitively, since t lies
somewhere between two claim arrivals and
since the inter-arrival times are i.i.d Exp(1)
we would perhaps expect that  P(B(t) <x1)
<1l-e™ xl<t,and P(F(t) <x2) <1
— e x2>0.

Howeve these conjectures are not
confirmed by calculation of the joint
distribution function of B(t) and F(t) for x1,
x2 >0:

Gewrey (X1, x2) = P(B(t) <x1, F(t) <
(57)

X2) .
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Since B(t) <t a.s. we consider the cases
x1 <t and x1 >t separately. We observe for
xl <tand x2 >0,

{B() < xL}={t -~ x1 <Ty <t} = {N(t
-x1,f]>1} (58)

{FM) <x2}={t<Typs1 St+x2}={
N(t, t+x2]>1} (59)

Hence, by the
increments of N

Gpyrey (X1, x2) =P (N(t —x1,t]>1,
N(t, t+x2] > 1) (60)

independent stationary

=P (N(t — x1, t] 2 1) P (N(t, t + x2] >

1) (61)
=(l-e™™ )-(1-eM2) (62)
An analogous calculation for x1 >t, x2 >

0
Geyrey KL, x2) = [ (1 -

e~ YD+  fpey(xD] (1 -

e—)LxZ )

Hence B(t) and F(t) are independent, F(t)
is Exp(2) distributed and B(t) has a truncated
exponential distribution with a jump at t:

PB(M) <x1)=1- e xl<t, and
PB()=t)= e * . (63)

This means in particular that the forward
recurrence time F(t) has the same Exp(1)
distribution as the inter-arrival times Wi of the
Poisson process N.

This property is closely related to the
forgetfulness property of the exponential
distribution: P (W1 >x+y | W1>Xx) =P (W1
>y), Xxy=0,

(Verify the correctness of this relation.)
and is also reflected in the independent
increment property of the Poisson property. It
is interesting to observe that

limPB) <x1)=1- e x1>0
(64)

t—oo
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Thus, in an “asymptotic* sense, both B(t)
and F(t) become independent and are
exponentially distributed with parameter .
[Thomas,2006], [Yuliya,2016]

The Distribution of the Inter-Arrival
Times:

By virtue  of Proposition, an
inhomogeneous Poisson process N with mean
value function x can be interpreted as a time
changed standard homogeneous N :

(N)t >0 = (N ()t =0 (65)

In particular, let ( Ti) be the arrival
sequence of N and ux be increasing and
continuous. Then the inverse p~exists and

NO ) =#Hi=1:Ti<u®)}=#H{i>1:
p (T <t} t=0, (66)

IS a representation of N in the sense of
identity of the finite-dimensional
distributions, i.e., N 2 N . Therefore and by
virtue of Theorem the arrival times of an
inhomogeneous Poisson process with mean
value function x have representation:

Tn=p*(Tn), Tn=W1+---+Wn,
n>1, Wi iidExp(l). (67)

Joint distribution of arrival/inter-arrival
times :

Assume N is a Poisson process on [0,0)
with a continuous a.e. positive intensity
function A. Then the following statements
hold.

The vector of the arrival times (717 ... Tn)
has density

fT]_ _______ ™n (.X']. ........,xn) =
e‘ll(xn) H?:l A(xl) I{0<x1<...<xn} (68)

The vector of inter-arrival times (W1, . .
2Wn) = (T1, T2 - T1,..., Tn — Tn-1) has
density

fwi. wn (1. ..., xn)

Fod et xi) , xi
>0. (69)

Since the intensity function 4 is a.e.
positive and continuous, u(t) = fotxl(s) ds is
increasing and u~! exists. Moreover, p is
differentiable, and u (1) = A(z). We make use
of these two facts in what follows:

We start with a standard homogeneous
Poisson process. Then its arrivals Tn have
representation 7n == W1 + - - -+ Wn for
an i.i.d standard exponential sequence (Wi).
The joint density of (T1 + - - - + Tn) is
obtained from the joint density of (W1 + - -
+ Wn) via the transformation

s

i, ..... yn)—=>wl,yl+y2, ..yl .. +.... +

yn) (70)
S-1

(zl,.....zn) — (21,22 -z1... zn —zn-1) (71)

Note that det (oS(y)/dy) = 1. Standard
techniques for density transformations yield
for0<x1 <xn

le ________ Tn (x1 ,xn):
W, Wn(xl'xZ—xL ...... Xn — xn —
1) = e *n (72)
e~(x2= ) | o=Cin— o) =

e_xn =
Since u~1 exists we conclude that for 0 <
X1<---<Xxn,

P( T1 < xI .......... Tn< xn ) = P
T <x1, ey (Toy) < xn)  (73)
= P
(Ty < u(x1), ... T, < u(xn)) (74)

u(x1)  pu(xn)
= J- f ffl_____jn (y1..yn)dyn .. dyl (75)
0 0
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u(x1)

=f J- eIyt coymydyn ... dyl  (76)
0 0

ulxn)

Taking partial derivatives with respect to
the variables x1, . . ., xn and noticing that g
(xi) = A(xi) , we obtain the desired density .

Relation follows by an application of the
above transformations S and S ~! from the
density of (T1, ..., Tn):

fwi,...,Wn(wi, . .
wl+w2, ...,wl+---+wn).

., wn) = fT1,...,Tn (w1,
(77)

we may conclude that the joint density of
W1, ..., Wn can be written as the product of
the densities of the Wi’s if and only if A(") =4

for some positive constant A. This means
that only in the case of a homogeneous
Poisson process are the inter-arrival times

W1 ... Wn independent (and identically
distributed). This fact is another property
which distinguishes the homogeneous Poisson
process within the class of all Poisson
processes on [0 ,) .

From previous results of gauge theory,
probability theory, and random processes, it is
natural to study non-life insurance based on
knowledge of these theories. In particular, it
has investigated the theory of stochastic
processes and the theory of applied
probability, and thus it seems appropriate to
use these tools for example Martingale and
Markov process theory is avoided as much as
possible as well as many analytical tools such
as Laplace-Stilt transformations, measuring
margins and instead, focusing on a more
probabilistic understanding. Intuitive risk and
lump sum claim operations and its basic
random structure. Random walk is one of the
simplest stochastic processes and in many
cases allows explicit calculations of the
distributions and their properties. If one walks
this way, then one is essentially walking
along the path of regeneration and making the
point. However, only some basic tools such as
the main theory of regeneration will be
explained on an informal level. Point process
theory will be used indirectly in many places,
in particular, in the section on Poisson's
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process, the idea of stochastic measure will be
mentioned but it is not necessary, since
theoretical arguments can sometimes be
replaced by intuitive ones.

Conclusions In this paper, we consider
collective risk models risk theory, the Poisson
process which is the most common claim
number process, and the cautery processes
obtained by analyzing risk management data
using probability distributions, where the
results obtained through different algorithms
are compatible with Each other in their basic
features, and in this way we were able to
compile and direct them that differs from
what is common in other research that reflects
different views on the method of outputs and
analysis of results, as these results allow us to
describe the similarities and differences

through the relationship between
homogeneous and heterogeneous
mathematical chains. The results of the

analysis also showed the comparison between
the Poisson process density function and
Markov intensity, and the relationships
between the homogeneous and heterogeneous

Poisson process, and the homogeneous
Poisson process as the arrival time
distribution process, its applications and
results.
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