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Abstract. This study aimed to optimize resource allocation and improve project efficiency at Mastergaz, a utility
and engineering service provider in Kyiv, by implementing the Dynamic Resource Allocation in Real-Time (DRART)
method over a two-year period (2022-2024). A mixed-methods approach was adopted, integrating quantitative data from
online surveys with qualitative insights from semi-structured interviews involving 50 professionals in resource
management. Twelve engineering projects were examined, including water meter installations and central heating system
repairs. Results showed a 25% reduction in average task completion time and a 15% decrease in resource expenditures.
The DRART framework, which incorporates resource needs, availability, project priority, and costs, enabled real-time
adjustments that led to more efficient allocation. Participants reported improvements in communication, faster decision-
making, and streamlined processes. The findings highlight DRART s effectiveness in delivering cost savings and better
project outcomes, underscoring its potential for broader application in dynamic resource management environments. By
demonstrating both quantitative benefits and qualitative enhancements, the study offers valuable insights for
organizations seeking agile strategies to optimize resource utilization. The integration of automated data processing and
human oversight facilitates rapid decision-making, mitigating risks tied to project delays or cost overruns. This tilt toward
agile decision-making proves especially significant in sectors that face variable budgets, shifting regulations, or
seasonally driven workloads. Although these findings emerged from a single organization, they suggest broader
applicability for real-time allocation models aimed at boosting project performance in utility management and related
fields, particularly when robust data-collection systems are in place. Moreover, DRART’s successful deployment at
Mastergaz suggests promising directions for further studies examining hybrid solutions that combine DRART with
advanced analytics or Al-powered forecasting tools.

Key words: dynamic resource allocation, DRART method, real-time data, project efficiency, cost optimization,
utility management, engineering projects.
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Anomauin. Lle docniodxcenns mano na memi onmumizyeamu po3nooil pecypcié i niosuwumu epexmusHicnmo
npoexkmy 6 Macmepeazi, NOCMauarbHUKA KOMYHATbHUX Ma iH#ceHepHux nociye y Kuesi, winaxom enposadoicenus memooy
OuHamiunoeo po3nodiny pecypcig y peanvromy udaci (DRART) npomszom osopiunoeo nepiody (2022-2024). Byro
3ACMOCco8aHO 3MiwlaHull nioxio, sAKull 00’€0HA8 KINbKICHI OaHi OHIAUH-ONUMY8AHb (3 AKICHUMU OGHUMU 3
Hanigcmpykmypoganux inmepa 1o 3a yuacmio 50 npogpecionanie 3 ynpaeninus pecypcamu. byno eugueno 12 inswceneprux
NPOEKMIB, BKIOYAIOUU BCIMAHOBNIEHHS NIYUILHUKIE 800U MA PEMOHM CUCMEMU YeHMPAlbHO20 onaieHHs. Pesyromamu
NOKA3aIU CKOPOUYEHHSI CepeOHbOo20 YAaCy BUKOHAHHA 3a60aHb Ha 25%, a cxkopouenwHs eumpam pecypcie — na 15%.
Cmpyxmypa DRART, sixa eéxniouae nompedu 8 pecypcax, OOCMYyRHICMb, NPIOPUMEmHICIb NPOEKMY ma GUmpamu,
HAOANA MONCIUBICIY 30LLUCHIOBAMU KOPUSYBAHHSL 68 PENCUMI PeanrbHO20 Yacy, wo npu3eeno 00 Oilbul eQexmusHoco
Ppo3nodiny. Yuachuxu nogioomunu npo NOKpawjeHHs: KOMyHikayil, 6inbu weuoKe nputiHammsi piulenb ma OnmuMiz08aHi
npoyecu. Pesynemamu niokpecnioroms egpexmusnicmo DRART y 3a6e3neuenni ekOHOMIT KOWmIs I Kpawjux pe3yiomamis
nPo€EKmy, NiOKpecuoouu o2o NOMenyian 0is Db WUPOKO20 3ACMOCY8ANHS 8 OUHAMIYHUX Ceped0BUYAX YNPAGIIHHSL
pecypcamu. Jlemoncmpylouu 5K KilbKiCHI nepesacu, mak i SKICHI NOKPAWEHHs, OOCHIONCEHHs NPONOHYE UYIHHY
inpopmayiio Onst opeanizayit, sKi WYKaome SHYYKi cmpamezii Ojisi ORMuMizayii 6uKopucmants pecypcis. lnmeepayis
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a8momMamu308anoi 06poOKU OAHUX Ma JHOOCLKO20 KOHMPOTIO CHPUAE WBUOKOMY NPULHAMMIO pilleHb, SHUNCYIOUU
PUBUKU, NOB'A3AHI I3 3aMPUMKAMU NPOEKMi6 abo nepesumpamoio kowmis. Llei naxun y Oik 2HyuK020 NpUiHAMMS piluens
BUABTIAEMbC OCOONUBO BANCIUBUM Y CEKMOPAX, AKI CMUKAIOMbCA 31 3MIHHUMU O100JCemamu, 3MiHoI0 npasuil ado
Ce30HHUM pobouum Haganmadicenuam. Hessadcarouu na me, wo 6UCHO8KU Oyiu ompumani 6 0OHil opeanizayii, GOHU
nepedbauaoms WUPULY 3ACMOCYBAHHA MoOOeieli pOo3Nodily 6 pealbHOMY Yaci, CHPAMOBAHUX HA NIOBUUEHHS
epexmugHOCmi NPOEKmMi6 6 YNPAGIiHHI KOMYHATbHUMU NOCIY2aMU MA CYMINCHUX 001acmsx, 0coOIu80 3a HAABHOCHI
Haoilinux cucmem 360py oanux. Kpim moeo, ycniwne poseopmanna DRART ¢ Macmepeasi npononye bazamoobiysawoyi
HanpsamKu 015 NOOANbUUX OOCTIOHNCEeHb i3 6UUeHHs 2iOpudHuUX piwens, axki noeduyrome DRART i3 poswuperoro

AHANIMUKOIO YU IHCIMPYMEHMAMU NPOSHO3Y8aHHs Ha ochosi L1,

Kntrouosi cnosa: ounamiunuii pos3nodin pecypcis, memoo DRART, Oani 6 peanvHomy uaci, egexmugHicmo
nPOEeKmy, ONmMuMizayis eumpam, YnpasiiHHsg KOMYHATbHUMU ROCTY2aMU, THOCEHEPHT NPOeKmu.

Dopmynu: 2; puc.: 0; mabn.:4; 6ion.: 39

Introduction.  Efficient  resource
allocation is broadly recognized as a linchpin
for enhancing operational performance and
ensuring equitable distribution of finite assets
(Li et al., 2024). In utility management, the
ability to dynamically align resources with
rapidly changing project demands,
infrastructure conditions, and regulatory
landscapes has become paramount. Although
many utilities utilize sophisticated frameworks
to achieve socio-economic objectives, real-
time responsiveness remains a key hurdle
(Baynev & Makarevich, 2023).

Analysis of latest research. Classical
resource-allocation models—such as linear
programming and the Analytic Hierarchy

Process (AHP)—offer structured, multi-
criteria decision-making frameworks.
Nevertheless, they often rely on static

assumptions that do not accommodate sudden
changes in operational conditions (Osuji,
2024). While certain methods incorporate
fairness considerations, their rigidity hinders
the quick reallocation demanded by
unpredictable environments (Bamel & Bamel,
2018; Momeni & Martinsuo, 2018). These
shortcomings become particularly evident in
large-scale utility contexts, where project
requirements can fluctuate dramatically over
short timespans (Chilton, 2022).

Toward Dynamic and Real-Time
Frameworks. To address the need for
flexibility, researchers have investigated
dynamic programming (Forootani et al., 2019)
and multiobjective algorithms (Tseng et al.,
2018) to iteratively adjust allocations. While
such methods enhance adaptability, their
computational overhead often hampers real-
time performance (Goda et al., 2023). Hybrid
approaches—combining classical optimization
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with live data feeds—further improve
responsiveness (Wu et al., 2021), but many
still demand substantial historical datasets or
specialized infrastructure, limiting their
applicability in settings with high variability
(Zaher & Eldakhly, 2023). Additionally,
cloud-based solutions speed up data processing
(Uddin et al.,, 2023), yet risk misalignment
between automated decisions and on-the-
ground realities if human validation is
minimized (Bertsimas & Stellato, 2022).
Human Oversight, Strategic Flexibility,
and  Transparency. Recent scholarship
emphasizes human oversight and strategic
flexibility as catalysts for effective resource
management, especially in uncertainty-prone
environments. By leveraging knowledge-
based resources and expert judgment,
organizations can more reliably realign their
operational priorities (Bamel & Bamel, 2018;
Lemanska-Majdzik & Okreglicka, 2024).
Equally important is transparency: when
allocation processes are opaque, frameworks
risk privileging efficiency over fairness,
leading to stakeholder dissatisfaction (Osuiji,
2024). Balancing automation with expert
review can mitigate these issues, ensuring that
resource decisions reflect both algorithmic
insights and nuanced contextual constraints
(He et al., 2023; Muneeb et al., 2022).
Against this backdrop, the Dynamic
Resource Allocation in Real-Time (DRART)
method stands out as an agile, data-informed
strategy designed to handle real-time
fluctuations. Unlike purely static or fully
automated approaches, DRART fuses live data
inputs with domain expertise to coordinate
resource needs, availability, project priorities,
and costs—an especially relevant approach for
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multi-domain operations at utility companies
such as Mastergaz.

Purpose of the article. This study
investigates the Dynamic Resource Allocation
in Real-Time (DRART) method to optimize
resource allocation at Mastergaz, a Kyiv-based
utility and engineering service provider. Over
a two-year period (2022-2024), DRART was
deployed in 12 engineering projects, blending
real-time data analytics (via the Dynamic
Resource Allocation Index, DRAI) with expert
oversight to facilitate rapid, adaptive decisions.
Methodologically, a mixed-methods approach
integrated quantitative data (e.g., online sunveys,
project performance metrics) with qualitative insights
(semi-structured  interviews involving 50  resource-
management professionals), offering both numerical
evidence and contextual perspectives on DRART’s
impact. Specifically, the research addresses
two core questions:

1.How does DRART influence
resource allocation efficiency in Mastergaz’s
engineering projects?

2.What comparative advantages does
DRART provide relative to less agile,
conventional methods?

By emphasizing agile data-driven
adjustments, human validation, and continuous
adaptation to resource availability and project
priority, this study delivers a streamlined yet
comprehensive evaluation of DRART’s
potential benefits within dynamic utility
management settings.

The main material of the article. This
research takes place at Mastergaz, a major
Ukrainian utility management company
specializing in engineering services for gas,
electricity, heating, water supply, ventilation,
and air conditioning. As distributed energy
resources  expand, organizations like
Mastergaz face a growing need for agile
resource-allocation mechanisms (Zheng et al.,
2018). Sustainability imperatives, reflected in
the adoption of hybrid energy systems, further
compel utilities to optimize resource usage,
reducing both operational costs and
environmental impacts (Duan et al., 2018).
Despite existing decision-support tools, many
operators struggle to recalibrate resources
swiftly when faced with unforeseen shifts in
project scope or priority.

301

This study employed a mixed-methods
design to develop and validate the Dynamic
Resource Allocation in Real-Time (DRART)
method in the operational context of
Mastergaz, a utility management company in
Ukraine.  Mixed-methods  research s
particularly useful for complex issues that
benefit from both quantitative and qualitative
perspectives (Harris-Lovett et al., 2019), and it
enabled a comprehensive assessment of how
DRART could enhance project efficiency and
resource utilization (Guo et al., 2019). A total
of 50 participants, including project managers,
resource coordinators, and operational staff,
were selected through purposive sampling to
ensure that individuals with direct involvement
in resource allocation processes were included
(Bertsimas & Stellato, 2022). The sample size
was designed to balance the need for sufficient
statistical power in the quantitative analysis
with the richness of qualitative insights,
thereby ~ minimizing  concerns  about
representativeness (Pham et al.,, 2020).
Although 50 participants may seem modest, it
provided an opportunity to reach data
saturation in relation to key operational roles,
and further expansion of the sample did not
reveal new patterns in preliminary testing.

A survey instrument employing a Likert
scale was administered to capture participants’
views on resource availability, project
prioritization, and cost management, following
established approaches for  measuring
operational performance in multifaceted
settings (Wu et al., 2021). Statistical analyses
of these survey data, including paired t-tests,
were performed to identify significant changes
in resource allocation efficiency (Chen et al.,
2020). In parallel, 15 participants took part in
semi-structured interviews, and their verbatim
responses were transcribed and analyzed
thematically to uncover deeper insights into
DRART’s practical implications (Nikjoo et al.,
2018). The number of interviews was deemed
sufficient for thematic saturation, as new codes
and categories ceased to emerge after
approximately 12 interviews, and additional
sessions merely reinforced existing findings.

Over a two-year period (2022-2024),
DRART was integrated into 12 engineering
projects at Mastergaz, each with budgets not
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exceeding 100,000 USD (Tsai et al., 2020).
The method was incorporated into the existing
BOS CIS platform, which functions as an
ERP-BPMS system that automates data
collection and processing while also relying on periodic
human review and manual verification. Specialists with
expertise in finance, engineering, and operational
management followed pre-established chedklists to verify
that inputs suchas resource needs and cost estimates
were valid, and the system itself flagged
potential anomalies, including mismatches in
updated project priorities. This reciprocal
oversight ensured greater reliability in real-
time data usage and allowed both the platform
and the personnel to complement each other’s
monitoring and decision-making processes
(Harris-Lovett et al., 2019).

The DRART method is grounded in the
Dynamic Resource Allocation Index (DRAI),
a metric designed to account for multiple
factors in real time.

The original formula is

E? 1 {"Lt!' (1 Pi}
ry = T
2aj=1 (c;+1) 1)
where r_t represents total resource
allocation at time t,

u i denotes the project’s resource

needs,

a_i indicates resource availability,

p_i reflects the project priority, and

C_j represents costs.

To refine the method and achieve
greater accuracy, weighted parameters for u_i,
a_i, p_i, and c_j were introduced in line with
research on multi-objective frameworks
(Ghasemi et al., 2022; Chang et al., 2021).

The modified formula is

Tl
P Zi 1 (wuui + wya; + “—"ppi)
t T
S (weey +1)
)
where w_u, w_a, w_p, and w_c are
weights for resource needs, availability,

project priority, and costs, respectively (He et
al., 2023). A sensitivity analysis was
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performed internally to confirm that small
deviationsinw_u, w_a, w_p, or w_c would not
drastically alter final resource allocation
decisions. Through this combination of
automated calculations and human input, the
DRART approach retained the agility needed
for real-time responsiveness while ensuring
that domain experts validated the parameters
on a regular basis.

Validation involved comparing task
completion times and resource expenditures
before and after DRART’s implementation,
with paired t-tests employed to assess whether
observed changes in allocation efficiency were
statistically significant (Asghariniya et al.,
2019). Baseline metrics were compared to
post-implementation data covering multiple
phases of the projects, thereby allowing a
longitudinal view of the impact (Boikov &
Kropotova, 2018). The study adhered to ethical
standards through informed consent, data
protection measures, and explicit
acknowledgments of potential constraints that
arose from focusing on a single organization
(Li et al., 2018). The combination of an
automated ERP-BPMS platform and human
checkpoints facilitated transparent data
gathering throughout the two-year period and
supported reproducibility of the findings,
given that the procedures and verification steps
were systematically documented.

The two-year application of the
Dynamic Resource Allocation in Real-Time
(DRART) method at Mastergaz, spanning
2022 to 2024, led to substantial improvements
in resource allocation and project outcomes
across 12 engineering initiatives, which
included water meter installations, central
heating system repairs, and ventilation unit
maintenance, each with budgets capped at
100,000 USD. To capture the breadth of these
enhancements, indicators such as average task
completion time and resource expenditures
were evaluated before and after DRART’s
implementation. Prior to DRART, the average
task completion time stood at 40 days, whereas
post-implementation data showed a decrease to
30 days, reflecting a 25% reduction (Table 1).
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Table 1

Average Task Completion Time Before and After DRART Implementation.

Metric Before DRART After DRART Improvement (%)
Implementation Implementation
Average Task Completion Time (days) 40 30 25
Source: calculated by the authors based on Mastergaz data (2022-2024)
In parallel, the mean cost per project The results of paired t-tests

decreased from 80,000 USD to 68,000 USD,
which represents a 15% reduction in resource

demonstrated that these observed reductions in
both task completion time and expenditures

expenditures (Table 2).

were statistically significant at p < 0.05 [9].

Table 2

Average Resource Expenditures Before and After DRART Implementation.

Metric

Before DRART
Implementation

After DRART
Implementation

Improvement (%)

Average Resource Expenditures ($)

80

68

15

Source: calculated by the authors based on Mastergaz data (2022-2024)

Qualitative  feedback from  semi-
structured interviews reinforced this pattern of
improvement, with participants noting that
DRART’s capacity for real-time reallocation
not only accelerated key decisions but also
made the distribution of labor and materials
more targeted. During water meter installations, a more
dynamic approach to shifting both human and material
resources was credited with producing a 20% decline in
overall resource wastage relative to prior methods, which
aligns with the broader literature on real-time adjustments
for efficient resource management (Wu etal., 2021).

In order to illustrate these benefits more
concretely, two representative engineering
projects were examined in detail. The first
project focused on installing new water meters
in three high-rise residential buildings, covering a total of
150 apartments. Prior to DRART, tasks were scheduled

weekly, often leading to either underutilized
technicians or unexpected delays if additional
materials were required mid-way. By contras,
once DRART was implemented, BOS CIS automatically
analyzed realtime data on meter availability, technician
proximity, and customer schedules. The result wasa drop-
in completion time from 35 daysto 25 days, along with
an 18% reductioninunused or damaged parts. Thismore
responsive scheduling also allowed technicians to respond
to urgent service requests (such as leaks or pressure issues)
without disrupting the overall project flow (Table 3).

A second project addressed the
scheduled maintenance of 200 central heating
units in multiple residential blocks. Before
DRART, maintenance tasks were queued by
static work orders that did not adapt to sudden
issues or uneven workloads, resulting in a
completion time of about 45 days.

Table 3

Example of Water Meter Installation Project Before and After DRART.

Metric Before DRART After DRART % Improvement
(Baseline) (New Approach)
Completion Time (days) 35 25 29
Material Wastage (%) 12 10 18
Technician Overtime (hours) 120 80 33
Customer Complaints (count) 8 3 63

Source: compiled by the authors based on BOS CIS platform analysis (2022-2024)

303



ISSN (Print) 2307-6968, ISSN (Online) 2663-2209
Bueni 3anmcku Yaisepcurery «KPOK» Nel (77), 2025

After DRART was introduced, data
from technicians’ smartphones regarding
heating units needing extra parts or more
specialized work were immediately processed
in the ERP-BPMS system, prompting a real-
time recalibration of staff schedules and
material stock. Maintenance time fell to 32

days, while overall resource expenditures
declined by 15%. Staff utilization improved in
parallel, as fewer idle hours were observed and
urgent requests were integrated into the revised
schedule without necessitating costly overtime
or re-routing (Table 4).

Table 4

Example of Central Heating Unit Maintenance Project Before and After DRART.

Metric Before After DRART % Improvement
DRART (New Approach)
(Baseline)
Completion Time (days) 45 32 29
Resource Expenditures (USD) 75 63,75 15
Technician Idle Time (hours/month) 45 28 38
Urgent Requests Handled on Schedule (%) 65 85 +20 p.p.

Source: compiled by the authors based on BOS CIS platform analysis (2022-2024)

Additional descriptive and inferential
analyses offered further insight into DRART’s
positive impact. Regression modeling assessed
the relationship between DRART adoption and
subsequent reductions in completion times and
costs. Modeled as 'y = b0 + b1x1l + b2x2 + ¢,
where y denotes either time or cost metrics, the
coefficients linked to DRART emerged as
positive predictors of performance
improvement. This finding is consistent with
best practices in performance measurement,
where longitudinal data analysis and formal
statistical testing reliably establish causal links
between managerial innovations and enhanced
project outcomes (Boikov & Kropotova, 2018;
Asghariniya et al., 2019). The overall trend
confirms that DRART fosters more adaptive
allocation processes, enabling both cost-
effectiveness and timely delivery in the context
of large-scale utility management.

These results also reflect the systematic
checks performed by qualified specialists and
the BOS CIS platform, which worked in
tandem to verify data inputs, flag potential
anomalies, and update project priorities.
Managers noted that real-time oversight
prevented bottlenecks and facilitated a faster
response to contingencies, such as unexpected
equipment failures or last-minute customer
cancellations. This reciprocal approach—
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combining automated calculations with human
validation—helped maintain accurate
performance metrics and ensured that the
documented improvements in time, cost, and
resource utilization were both consistent and
reproducible. By highlighting case-specific
outcomes in meter installations and heating
unit maintenance, the data confirm that
DRART can be readily adapted to projects of
varying complexity across Mastergaz’s broad
operational scope, thereby enhancing the
firm’s capacity to serve over 750,000
apartment owners and to process 200-300
service requests daily.

The findings from Mastergaz illustrate
how a real-time and adaptable resource
allocation system can address the challenges
posed by dynamic environments. The
Dynamic Resource Allocation in Real-Time
(DRART) method builds upon the idea that
timely adjustments to resource availability and
project priorities can greatly enhance
operational  effectiveness. Compared to
conventional static strategies, DRART’s
reliance on current data allows resources to be
rapidly redirected to where they are most
needed, thus overcoming the rigidity of
approaches that struggle to accommodate
sudden shifts in project demands (Abedallah &
Almajed, 2019). Its Dynamic Resource
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Allocation Index (DRAI) further streamlines
the prioritization process, offering a more
straightforward method of balancing multiple
factors than Fuzzy TOPSIS-based
frameworks, which can suffer from high
computational  overhead (Momeni &
Martinsuo, 2018).

This study confirms that DRART can
outperform heuristic and machine learning-
based approaches in scenarios where historical
datasets are sparse or of limited relevance.
While machine learning models can predict
resource shortfalls, they generally require
extensive historical inputs (Zaher & Eldakhly,
2023). DRART, by contrast, uses fewer
historical data points, placing greater emphasis
on real-time updates for efficiency gains in
multi-project settings. The simplicity of
DRART also provides an edge over dynamic
programming, where computational
complexity may complicate quick
recalibrations (Goda et al., 2023). In addition,
DRART helps mitigate  operational
inefficiencies, such as the cascading delays
associated with conventional resource leveling
(Chilton, 2022), because it integrates project
priorities, availability, and costs into a single,
coherent decision-making framework.

Qualitative insights at Mastergaz
confirmed that DRART supports a
collaborative, adaptable approach to problem-
solving, aligning with the literature on hybrid
resource allocation (Momeni & Martinsuo,
2018). Real-time recalibration  proved
especially  beneficial  for  multi-phase
engineering assignments, resulting in shorter
completion times and cost reductions. These
outcomes  corroborate  previous  work
suggesting that DRART surpasses various
methods, including dynamic programming and
machine learning-based models, by delivering
faster project completion when conditions are
uncertain (Forootani et al.,, 2019). In the
management of ventilation systems, DRART
made use of both historical maintenance
records and immediate operational data to
reduce expenses, exemplifying its capacity to
combine predictive elements with live resource
allocation (Zheng et al., 2024; Shanmugam et
al., 2023). Its ability to function with minimal
computational overhead distinguishes it from
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Al-driven optimization frameworks that often
carry significant requirements, such as edge
computing’s latency constraints or high
processing power (Islam, 2024; Tseng et al.,
2018; Kumar et al., 2023).

These findings speak directly to the
research questions. First, they demonstrate that
deploying the DRART method at Mastergaz
yields measurable gains in resource allocation
efficiency, thereby validating the real-time
adjustment mechanism as a catalyst for more
rapid  project execution and  lower
expenditures. Second, they show that DRART
holds a competitive edge over classical
approaches, owing to its responsiveness and
reduced reliance on comprehensive historical
datasets, reinforcing the principle that simpler,
real-time methods can be equally or more
effective  than  computationally  heavy
alternatives.

Despite DRART’s effectiveness under
rapidly evolving conditions, the study was
limited to a single organization whose data
infrastructure is relatively mature. This
reliance on robust data systems contrasts with
generalized machine learning frameworks that
can adapt to different contexts if large volumes
of historical data are available (Abishek et al.,
2023). DRART’s streamlined structure also
has inherent constraints; in very high-
dimensional contexts, such as multi-user cloud
networks, more sophisticated algorithms may
account for interactions that DRART cannot
fully capture (Lin et al., 2020). Future work
may explore hybrid configurations that blend
DRART’s real-time recalibration capabilities
with advanced Al-based methods, including
reinforcement learning and neural networks, in
order to expand scalability and adaptability
(Lyu et al., 2024; Gupta et al., 2024). Such
endeavors would help determine whether the
method’s key strengths extend to a wider
variety of organizational environments and
whether incorporating more computational
clements could refine DRART’s decision-
making processes without jeopardizing its
capacity for rapid, flexible responses.

Conclusion. The results achieved at
Mastergaz confirm that the Dynamic Resource
Allocation in Real-Time (DRART) method
provides an effective and adaptable strategy
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for optimizing resource allocation amid
constantly shifting conditions. Over the two-
year implementation period, DRART’s
emphasis on real-time data and flexibility led
to a 25% decrease in average task completion
times and a 15% reduction in overall
expenditures. These quantitative
improvements were supported by qualitative
observations  that indicated enhanced
communication, accelerated decision-making,
and more transparent allocation mechanisms.
By integrating variables for resource needs,
availability, project priority, and costs into the
Dynamic Resource Allocation Index, DRART
enabled Mastergaz to respond more precisely
to immediate operational requirements.
Although these findings emerged from a single
organization, they suggest broader
applicability for real-time allocation models
aimed at boosting project performance in

utility management and related fields,
particularly when robust data-collection
systems are in place.

DRART has demonstrated that

continuous monitoring and flexible resource
distribution yield tangible benefits for
managers by minimizing inefficiencies and
bridging information gaps. The integration of
automated data processing and human
oversight facilitates rapid decision-making,
mitigating risks tied to project delays or cost
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