
ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №4 (76), 2024

256

УДК: 005.8:519.8

DOI: 10.31732/2663-2209-2024-76-256-265

ПЛАНУВАННЯ ПРОЕКТІВ У РОЗПОДІЛЕНОМУ СЕРЕДОВИЩІ З

ВРАХУВАННЯМ РОБОЧИХ ГРАФІКІВ ПРАЦІВНИКІВ
Олександр Боголій

Aспірант, ВНЗ «Університет економіки та права «КРОК», м. Київ, Україна, email: boholiiom@krok.edu.ua,

ORCID: https://orcid.org/0000-0003-0253-667X

PROJECT SCHEDULING IN A DISTRIBUTED ENVIRONMENT CONSIDERING

EMPLOYEES' WORKING HOURS
Oleksandr Bogolii

PhD Student, Higher Education Institution the “KROK” University, Kyiv, Ukraine, email: boholiiom@krok.edu.ua

ORCID: https://orcid.org/0000-0003-0253-667X

Анотація: Останніми роками розподілена розробка програмного забезпечення набула значної

популярності, дозволяючи компаніям підвищувати продуктивність завдяки використанню глобальних ресурсів,

водночас знижуючи витрати на виробництво та скорочуючи час виходу на ринок. Проте, така організаційна

модель ставить перед управлінцями низку викликів. Одним із таких викликів є складність планування завдань у

віддаленому, розподіленому середовищі. Окрім традиційних факторів, які враховуються в умовах спільної

роботи на одному місці, менеджери повинні зважати на різноманітність робочих годин та часових поясів, в

яких працюють географічно розподілені члени команди. Незважаючи на те, що за останні десятиліття було

розроблено багато методів планування, обмежена кількість досліджень присвячена плануванню з урахуванням

робочих годин співробітників. Метою цього дослідження є розробка нового підходу до планування, який враховує

календарні обмеження співробітників та надати цінні поради для керівників проектів, особливо тих, що

працюють у віддалених, розподілених середовищах. Запропонована методологія включає розробку нового

алгоритмічного підходу для створення оптимального плану проекту, який враховує робочий час працівників.

Порівняльний аналіз із класичним двофазним методом планування для розподілених команд показав потенціал

скорочення загальної тривалості проекту на 6% і продемонстрував особливу ефективність у проектах, що

характеризуються високою складністю графа завдань. Крім того, експерименти показали, що планування з

урахуванням робочого часу є ще ефективнішим, коли різниця в часових поясах між підкомандами становить

приблизно 8 годин, що відповідає типовому робочому дню працівника. В подальшому запропонований підхід

можна додатково покращити, враховуючи додаткові фактори та обмеження в процесі розподілу ресурсів,

зокрема необхідність синхронізації між інженерами, які працюють у різних часових поясах.

Ключові слова: планування проєктів; робочий графік; гнучка розробка програмного забезпечення;

розподілене середовище; часовий пояс.

Формул: 0, рис.: 9, табл.: 1, бібл.: 20

Abstract: In recent years, distributed software development has gained significant popularity, enabling companies

to enhance productivity by leveraging global resources while simultaneously reducing production costs and time-to-

market. However, this organizational model presents management with distinct challenges. One such challenge lies in

the complexity of scheduling tasks in a remote, distributed environment. In addition to the traditional factors considered

in co-located settings, managers must now account for the diverse working hours and time zones of geographically

dispersed team members. Although numerous scheduling techniques have been developed in recent decades, limited

research has focused on scheduling in relation to employees' working hours. This research aims to develop a novel

scheduling approach that incorporates employee calendar constraints and provides valuable insights for project

managers, particularly those operating in remote, distributed environments. The proposed methodology encompasses the

development of a new algorithmic approach to produce an optimal project schedule that accounts for employee working

hours. Comparative analysis against classical two-phase calendarization method and co-located setups showed the

potential to reduce overall project duration by 6% and demonstrates particular efficiency in projects characterized by

high task graph complexity. In addition, experiments showed that scheduling with consideration of working hours is even

more effective when the time zone difference between subteams is approximately 8 hours, aligning with the typical

employee workday. In the future, the proposed technique can be further refined by considering additional factors and

constraints in the resource allocation process, specifically the need for synchronization between engineers working in

different time zones.

Keywords: project scheduling; calendarization; agile software development; distributed environment; time zone.

Formulas: 0, fig.: 9, tabl.: 1, bibl.: 20

mailto:boholiiom@krok.edu.ua
https://orcid.org/0000-0003-0253-667X
https://orcid.org/0000-0003-0253-667X

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №4 (76), 2024

257

1.Introduction

In a remote, distributed setup, members

of one team often work in different time zones.

In such a setup, it is important to adopt task

scheduling approaches that take into account

different working hours. It is especially

important when tasks are interconnected, and

team members can wait much longer while

dependent tasks are completed by their

colleagues in other time zones. Figure 1 shows

an example of a project that consists of three

interconnected tasks. Tasks are presented in

circles, with numbers inside depicting the

numero of the task at the top and the time

needed to complete the task at the bottom.

Arrows show dependencies between tasks.

Figure 1. Project with 3 interconnected tasks
Source: Figure created by authors

Let’s assume we have 2 employees that

work on a project with the same working

schedule, 8 hours per day. If we use the Earliest

Finish Time (EFT) scheduling algorithm, the

project could be finished by 14 o’clock on the

second day. Figure 2 shows the schedule of the

project in this setup in the form of a timing

diagram, which is used to illustrate the

allocation of the parallel project tasks among

the team members and the execution order of

the tasks.

Figure 2. Project schedule when employees have the same working hours
Source: Figure created by authors

If we take 2 employees that work in

different time zones, for example, first in

Eastern Europe (GMT+1) and second in

California (GMT-7). Using the same task

assignments as above but not adapting to the

time difference may result in a slightly longer

project finish time. In Figure 3, we see that the

first employee cannot start working on the

third task, as it depends on task 2, which is

assigned to his colleague. The planned project

finish is at 12 o'clock on the third day.

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №4 (76), 2024

258

Figure 3. Project schedule when employees have different working hours
Source: Figure created by authors

If we adopt our scheduling algorithm to

take into consideration working hours, we can

improve project timing. EFF will assign the

second task to the first employee, as with his

schedule, he will finish it faster than if it is

assigned to the second employee. With such a

schedule, the project will be finished at 16

o’clock on the second day (Figure 4).

Figure 4. Improved project schedule when employees have different working hours
Source: Figure created by authors

The remainder of the paper is organized

as follows: Section 2 reviews related literature

on project scheduling; Section 3 introduces the

proposed algorithm for task scheduling, which

accounts for employees' working hours;

Section 4 details the experimental setup used

to evaluate the algorithm; and Section 5

presents a discussion of the evaluation results.

Finally, Section 6 offers the paper's

conclusion.

2.Literature Review

Project Managers often use different

scheduling techniques and tools to improve

planning and organization, optimize resource

allocation, reduce risk and uncertainty, and

increase accountability (Fox & Spence, 1998;

Pollack-Johnson & Liberatore, 1998).

The Critical Path Method (CPM) and the

Program Evaluation and Review Technique

(PERT) are the two most popular approaches

for project scheduling.

CPM (Moder, 1988) is a deterministic

technique that utilizes a task graph where each

task is allocated a deterministic duration. CPM

computes the longest path within this graph,

known as the "critical path." The ”critical path”

length is the earliest project completion time

(Khodakarami et al., 2007).

PERT (Malcolm et al., 1959) is another

network technique. It uses a statistical

approach to calculate the probability of

projects and tasks being completed on time.

PERT requires three different task duration

estimates: pessimistic, optimistic, and most

likely. Then the “critical path” and the start and

finish dates are calculated. PERT is beneficial

when there are significant variations in

optimistic and pessimistic estimates and great

uncertainty regarding project outcomes.

Both CPM and PERT assume that the

resources required by project activities exist in

unlimited quantities. In reality, practitioners

often face high contention for scarce resources,

which frequently causes missed deadlines and

commitments to stakeholders. To prevent this,

a feasible plan must be implemented, which

requires the reflection of a limited number of

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №4 (76), 2024

259

resources. This is a standard problem in project

management and is often referenced in

literature as a Resource-Constrained Project

Scheduling Problem (RCPSP) and shown to be

an NP-hard problem (Blazewicz et al., 1983).

Many RCPSP techniques have been developed

that seek to achieve the earliest project

completion, considering dependencies

between tasks and resource constraints.

RCPSP strategies often apply some heuristics

from real life (Goldratt, 1997), make use of

constraint programming (Kreter et al., 2017;

Vanhoucke & Coelho, 2016), genetic

algorithms (Zhang et al., 2008), and neural

networks (Golab et al., 2023).

Critical Chain Project Management

(CCPM), proposed by Goldratt (1997), is one

of the most well-known resource-constrained

planning strategies. The core concept of

CCPM is the identification and management of

the project's critical chain, which is the

sequence of tasks that determines the project's

overall duration. CCPM has proven to be

effective in resolving resource contentions as

well as tackling problems concerning human

resource behavior.

In most cases, researchers work on new

RCPSP solutions, taking into consideration

some assumptions from real life, like the type

of available resources (renewable, non-

renewable, double-constrained), project

activity characteristics (preemptive, varying in

time, multi-mode, etc.), objection function

type (time-based, economic, resource-based,

and others), and availability of information

(deterministic, non-deterministic) (Habibi et

al., 2018).

However, despite numerous RCPSP

techniques being proposed in recent decades,

very little research has been done to address

scheduling concerning employees' working

hours. Zhan (1992) presented a method for

time planning for a project with regard to the

working and non-working days of employees

(calendarization problem). This method

combines two phases. In the first phase, the

earliest start times of activities for a project are

determined without considering the calendar.

In the second phase, start times are mapped to

the dates on employee’s calendars.

Another algorithm for project scheduling

with calendar constraints was proposed by

Franck et al. (2001). The proposed algorithm

considers minimum and maximum time lags

between activities and time intervals during

which some resources, such as manpower, are

not available and examines different priority

rules for the selection of the next eligible

activity during scheduling. This method

schedules activities with regard to the

working-time calendar common to all

resources, while in practice, different resources

generally have different calendars.

Project scheduling with different

calendars is especially vital for the software

development industry, where engineers, even

in the same team, often work from different

locations and in different time zones. Having a

way to efficiently allocate project tasks among

team members, taking into consideration the

specifics of modern software development,

would be beneficial.

3.Methodology

This research paper seeks to determine

whether adapting widely used scheduling

techniques to align with employees' working

hours can enhance overall project completion

time.

In this section, we define an algorithm

for project scheduling for distributed software

development teams. The proposed algorithm

uses the following assumptions, typical for the

majority of agile software development teams:

-Each project task can be assigned to

exactly one engineer.

-Each engineer can work at the same

time on only one task (no multitasking).

-Each engineer has its own working time

calendar.

-Engineers can work on any task from

the project.

At first, we define the project task queue,

together with the corresponding dependencies

set 𝐷𝑖 for each task 𝑖 . In addition, we define

working time calendars 𝐶𝑘 for each team

member 𝑘 from the team. Figure 5 illustrates

the proposed algorithm.

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №4 (76), 2024

260

Figure 5. Calendarization algorithm
Source: Figure created by authors

We start our algorithm with the first time

point 𝑡 = 0, and proceed with the next steps:

1.Select the highest priority available

task for assignment. If all tasks are already

assigned, terminate algorithm execution.

2.If no tasks are available at the moment

𝑡, meaning dependencies are not yet resolved,

we repeat from step 1 for 𝑡 = 𝑡 + 1.
3.If there is a task, that is ready to be

executed, we are iterating among free team

members, and for each team member 𝑘, we are

calculating the earliest start time for tasks 𝐸𝑆𝑘𝑖

according to their working time calendar. We

assign the task to the team member 𝑘 who has

the earliest 𝐸𝑆𝑘𝑖

4.Repeat assignments from step 1.

We conducted several experiments to

evaluate the proposed algorithm against the

standard two-phase calendarization technique,

where scheduling is performed first without

considering the calendar, and then start times

are mapped to the dates on employees’

calendars. In addition, we evaluated the project

duration for the local team, where all

employees are working in the same time zone.

Each experiment consisted of 100

projects. We randomly generated a task set for

each project using the model proposed by

Watts & Strogatz (1998) to generate

relationships between tasks. This model can

capture both randomness and clustering, which

are common features in real projects.

In our experiments, we used different

project and team configurations to show the

impact of different factors, such as the varying

number of task dependencies and time

differences between sites. We have considered

the following five different scheduling

parameters: number of tasks, number of

dependencies between tasks, team size, size 1

time zone, and site 2 time zone.

To save costs, many companies from

North America and Western countries

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №4 (76), 2024

261

outsource software development to an overseas

engineering team. According to an analysis

performed by Divakova (2023), the most

comfortable locations for software

development outsourcing are Eastern Europe

(Ukraine, Poland, the Czech Republic, and

Romania) and Asia (India, China, the

Philippines, and Vietnam). In conducted

experiments, we simulate setup when the

engineering team is extended with outsourced

engineers at another time zone:

1.The engineering team in Western

Europe outsources to Asia (5 hours difference).

2.The engineering team in California

outsources to Eastern Europe (8 hours

difference).

3.The engineering team in California

outsources to Asia (13 hours difference).

Multiple engineering practitioners agree

in the opinion that the optimal Agile team size

is around 5-7 members (Levison, 2020; Cohn,

2024). In our experiments, we assumed that the

team consisted of six members. The average

task duration can vary significantly depending

on various factors such as the complexity of

tasks, team experience, team velocity, and the

nature of the project. In Agile methodologies

like Scrum, estimation is often performed in

story points, which represent a relative effort

to accomplish a task. Big stories are usually

broken down into smaller, manageable tasks

that can be done in 1 to 3 days (Fuqua, 2015).

For our experiments, we assigned each task a

random story point value from the Fibonacci

sequence (Cohn, 2022) with a maximum of 8

and then converted it to absolute time by

multiplying it by team velocity, which is

chosen based on maximum task duration. We

used a total of 15 tasks per project, which is the

typical number of tasks in Agile Sprint (Fuqua,

2015).

For experiments 1–3, we change the

value of dependencies between tasks while

keeping the other parameters constant. Having

more dependencies between tasks makes it

harder to parallelize the work, increasing the

importance of coordination between

employees. Thus, having an efficient

scheduling approach that makes use of

working hours is supposed to be beneficial.

In experiment 4, we study the impact of

project task duration. We increased the

maximum task duration from 8 to 24 hours

with an 8-hour step. We want to verify if the

proposed approach can take advantage of

shorter task durations by having a portion of

tasks assigned and finished before other

employees' time zone shifts, resulting in a

more optimal project schedule.

Table 1 depicts the experimental setup

for this study.

Table 1. Experimental setup

№
Number

of Tasks

Number of

Dependencies
Time zone 1 Time zone 2

Time

Difference

(hours)

Team

Size

Max Task

Duration

(hours)

1 15 15-60 (step 15)
Western Europe

(GMT+01:00)

Asia

(GMT+06:00)

5 6 24

2 15 15-60 (step 15)
California (GMT-

07:00)

Eastern Europe

(GMT+01:00)
8 6 24

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №4 (76), 2024

262

№
Number

of Tasks

Number of

Dependencies
Time zone 1 Time zone 2

Time

Difference

(hours)

Team

Size

Max Task

Duration

(hours)

3 15 15-60 (step 15)
California (GMT-

07:00)

Asia

(GMT+06:00)

13 6 24

4 15 30
California (GMT-

07:00)

Eastern Europe

(GMT+01:00)
8 6 8-24

Source: Table created by authors

4. Results and Discussion

In the first experiment, we tested a setup where a

team from Western Europe outsources to Asia. The time

difference is 5 hours. The experiment results presented in

Figure 6 show that the proposed resource task allocation

strategy performs significantly better than two-phase

calendarization and prove that distributed work from

different time zones could lead to faster project delivery

than work from the same location (time zone). It is even

more beneficial to use the proposed approach as the

number of task dependencies increases.

Figure 6. Results of the 1st Experiment
Source: Figure created by authors

Figure 7 and Figure 8 show results for experiments

2 and 3, respectively. It is clear from the charts that the

proposed approach is beneficial in these experiments as

well. Another interesting observation, derived from

experiments 2 and 3, is that without efficient task allocation,

the distribution of development may not always lead to a

reduction in project duration. We can also

notice that the maximum gain from distributed

development is achieved when the time zone

difference between subteams is 8 hours

(second experiment), which correlates to the

working day hours of employees, resulting in a more

optimal concurrent task schedule.

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №4 (76), 2024

263

Figure 7. Results of the 2nd Experiment
Source: Figure created by authors

Figure 8. Results of the 3rd Experiment
Source: Figure created by authors

Figure 9 presents the results of the 4th

experiment, which confirms the impact of task

durations on possible project duration. Project

makespan tends to increase between the

proposed and two-phase strategy when we

increase the maximum project task duration.

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №4 (76), 2024

264

Figure 9. Results of the 4th Experiment
Source: Figure created by authors

On average, the scheduling technique

presented in this paper resulted in

approximately 6% faster project completion

time in comparison to the two-phase

calendarization approach.

Conclusion

In this paper, we study the resource-

constrained project scheduling problem to

minimize the software development project’s

makespan with regard to employee calendar

constraints. Unlike the previous approach,

where scheduling was first performed without

considering the calendar and then start times

were mapped to the dates of employees’

calendars, we proposed a method to perform

project scheduling that takes into account

employees’ working hours before task

assignment.

Different parameters were tested to

evaluate the effectiveness of the proposed

strategy compared to its counterpart. To be

closer to the real world, we conducted

experiments for popular distributed team

configurations, each containing the onsite part

in one time zone and the outsource part in

another. Overall, there were three experiments,

with varying time differences between

subteams ranging from 5 to 13 hours. In each

experiment, the value of task dependencies

increased while keeping the other factors

constant.

After conducting extensive experiments,

it was proven that the proposed technique was

up to 6% more efficient than the classical two-

phase approach. The efficiency increases with

the increase in project task graph complexity.

It is also observed that the use of the

proposed approach is even more efficient when

the time zone difference between subteams is

8 hours in comparison to a shorter 5 or 13

hours, which correlates to the employee's

working day duration.

In the future, the proposed technique can

be further improved by considering additional

factors and constraints in the resource

allocation process, specifically the need for

synchronization between engineers working in

different time zones.

References:

1.Blazewicz, J., Lenstra, J. K., & Kan, A. H. G. R.

(1983). Scheduling subject to resource constraints:

Classification and complexity. Discrete Applied

Mathematics, 5(1), 11–24.

https://doi.org/10.1016/0166-218X(83)90012-4

2.Golab, A., Gooya, E. S., Falou, A. A., & Cabon, M.

(2023). A convolutional neural network for the

https://doi.org/10.1016/0166-218X(83)90012-4

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №4 (76), 2024

265

resource-constrained project scheduling problem

(RCPSP): A new approach. Decision Science Letters,

12(2), 225–238.

https://doi.org/10.5267/j.dsl.2023.2.002

3.Goldratt, E. M. (1997). Critical chain. Great

Barrington: The North River Press Publishing

Corporation.

4.Khodakarami, V., Fenton, N., & Neil, M. (2007).

Project Scheduling: Improved Approach to Incorporate

Uncertainty Using Bayesian Networks. Project

Management Journal, 38(2), 39–49.

https://doi.org/10.1177/875697280703800205

5.Franck, B., Neumann, K., & Schwindt, C. (2001).

Project scheduling with calendars. OR-Spektrum, 23(3),

325–334. https://doi.org/10.1007/PL00013355

6.Habibi, F., Barzinpour, F., & Sadjadi, S. J. (2018).

Resource-constrained project scheduling problem:

Review of past and recent developments. Journal of

Project Management, 55–88.

https://doi.org/10.5267/j.jpm.2018.1.005

7.Kreter, S., Schutt, A., & Stuckey, P. J. (2017). Using

constraint programming for solving RCPSP/max-cal.

Constraints, 22(3), 432–462.

https://doi.org/10.1007/s10601-016-9266-6

8.Fox, T. L., & Spence, J. W. (1998). Tools of the Trade:

A Survey of Project Management Tools. Project

Management Journal, 29(3), 20–27.

https://doi.org/10.1177/875697289802900305

9.Malcolm, D. G., Roseboom, J. H., Clark, C. E., &

Fazar, W. (1959). Application of a Technique for

Research and Development Program Evaluation.

Operations Research, 7(5), 646–669.

https://doi.org/10.1287/opre.7.5.646

10.Moder, J. (1988). Network techniques in project

management. Project Management Handbook, 2nd

edition (pp. 324–373). New York: Van Nostrand

Reinhold.

11.Pollack-Johnson, B., & Liberatore, M. J. (1998).

Project Management Software Usage Patterns and

Suggested Research Directions for Future

Developments. Project Management Journal, 29(2), 19–

28. https://doi.org/10.1177/875697289802900205

12.Vanhoucke, M., & Coelho, J. (2016). An approach

using SAT solvers for the RCPSP with logical

constraints. European Journal of Operational Research,

249(2), 577–591.

https://doi.org/10.1016/j.ejor.2015.08.044

13.Watts, D. J., & Strogatz, S. H. (1998). Collective

dynamics of ‘small-world’ networks. Nature,

393(6684), 440–442. https://doi.org/10.1038/30918

14.Zhan, J. (1992). Calendarization of time planning in

MPM networks. ZOR, Zeitschrift Für Operations

Research Methods and Models of Operations Research,

36(5), 423–438. https://doi.org/10.1007/BF01415759

15.Zhang, H., Xu, H., & Peng, W. (2008). A Genetic

Algorithm for Solving RCPSP. 2008 International

Symposium on Computer Science and Computational

Technology, 246–249.

https://doi.org/10.1109/ISCSCT.2008.255

16.Cohn, M. (2024, January 2). The Ideal Size for Your

Agile Team.

https://www.mountaingoatsoftware.com/blog/the-just-

right-size-for-agile-teams

17.Levison, M. (2020, March 13). Scrum Team Size -

How Big? How Small? Agile Pain Relief.

https://agilepainrelief.com/blog/scrum-team-size.html

18.Fuqua, A. (2015, May 29). Agile Story Points: How

Many Stories Per Sprint? LeadingAgile.

https://www.leadingagile.com/2015/05/agile-story-

points-how-many-user-stories-per-sprint-rules-of-

thumb/

19.Divakova, G. (2023, October 16). Offshore

Developers — Rates in 2024: Best Countries and Best

Platforms. YouTeam. https://youteam.io/blog/offshore-

developers-rates-in-2020-best-countries-and-best-

platforms-to-hire-a-remote-development-team/

20.Cohn, M. (2022, September 10). Agile Estimation:

Why The Fibonacci Sequence Works. Mountain Goat

Software.

https://www.mountaingoatsoftware.com/blog/why-the-

fibonacci-sequence-works-well-for-estimating

https://doi.org/10.1177/875697280703800205
https://doi.org/10.5267/j.jpm.2018.1.005
https://doi.org/10.1007/s10601-016-9266-6
https://doi.org/10.1177/875697289802900305
https://doi.org/10.1287/opre.7.5.646
https://doi.org/10.1177/875697289802900205
https://doi.org/10.1016/j.ejor.2015.08.044
https://doi.org/10.1038/30918
https://doi.org/10.1007/BF01415759
https://doi.org/10.1109/ISCSCT.2008.255
https://www.mountaingoatsoftware.com/blog/the-just-right-size-for-agile-teams
https://www.mountaingoatsoftware.com/blog/the-just-right-size-for-agile-teams
https://agilepainrelief.com/blog/scrum-team-size.html
https://www.leadingagile.com/2015/05/agile-story-points-how-many-user-stories-per-sprint-rules-of-thumb/
https://www.leadingagile.com/2015/05/agile-story-points-how-many-user-stories-per-sprint-rules-of-thumb/
https://www.leadingagile.com/2015/05/agile-story-points-how-many-user-stories-per-sprint-rules-of-thumb/
https://youteam.io/blog/offshore-developers-rates-in-2020-best-countries-and-best-platforms-to-hire-a-remote-development-team/
https://youteam.io/blog/offshore-developers-rates-in-2020-best-countries-and-best-platforms-to-hire-a-remote-development-team/
https://youteam.io/blog/offshore-developers-rates-in-2020-best-countries-and-best-platforms-to-hire-a-remote-development-team/
https://www.mountaingoatsoftware.com/blog/why-the-fibonacci-sequence-works-well-for-estimating
https://www.mountaingoatsoftware.com/blog/why-the-fibonacci-sequence-works-well-for-estimating

