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Abstract: In recent years, it has become prevalent for software development to be held from different places in 

different time zones. In such a setup, to manage projects efficiently it is crucial to pay special attention to knowledge 

management inside the organization. The purpose of the article is to provide suggestions for improving knowledge 

management in the organization using NLP models. In this paper, we use a hybrid approach to build a chatbot integrated 

into a company’s messaging system, so employees can use it almost the same way as if they ask a question to their 

colleagues. Questions are processed by the proposed framework, and the answer is posted next to the message of the 

question. While companies often have a lot of documentation in different kinds of wikis and documents, it may be 
challenging to find an answer to a question on time. Often, employees have to wait hours to get help from colleagues in 

other time zones. Having an intelligent chatbot inside an organization capable of answering questions using internal docs 

as a source could be beneficial. In this paper, we proposed an approach to building an intelligent chatbot, utilizing pre-

build NLP models for efficient retrieval of documents, similar to the employee’s query, and further extracting answers 

from these documents. We combine the Sentence BERT document retrieval model with the RoBERTa-based answer 

extraction model. Apache Beam project wiki was used as an example of the company’s internal wiki. The proposed 

approach was evaluated on a test dataset containing 63 question-answer pairs in SQuAD format, and showed good 

performance, with F1 and Exact Match scores being ~0.73 and ~0.53 respectively. Thus, enterprises can use the same 

technique to build internal chatbots to facilitate knowledge management. 

Keywords: Chatbots, NLP models, Sentence BERT, RoBERTa, Knowledge Management 
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Анотація. Останнім часом розробка програмного забезпечення дедалі частіше відбувається за участі 

команд, розподілених по різних місцях та часових поясах. За таких умов,  для ефективного управління проектами 

вкрай важливо приділяти особливу увагу управлінню знаннями всередині організації.  Метою статті є надання 

пропозицій щодо вдосконалення управління знаннями в організації за допомогою NLP моделей. У цій статті ми 

використовуємо гібридний підхід для створення чат-бота, інтегрованого в систему обміну повідомленнями 

компанії, щоб співробітники могли використовувати його майже так само, як якщо б вони ставили запитання 

своїм колегам. Питання опрацьовуються запропонованим фреймворком, а відповідь розміщується поруч із 

повідомленням запитання. Незважаючи на те, що компанії зазвичай мають досить багато документації в 

різноманітних wiki-сторінках та документах,  знайти вчасно відповідь на запитання буває досить складно. 

Часто співробітникам доводиться годинами чекати, щоб отримати допомогу від колег, що працюють в інших 
часових зонах. Для організації може бути  корисним використання інтелектуального чат-бота, здатного 

відповідати на запитання, використовуючи внутрішню документацію як джерело. У цій статті ми пропонуємо 

підхід до створення  чат-бота, що використовує попередньо створені NLP моделі для пошуку документів, 

релевантних запиту співробітника, та подальшого вилучення відповідей із цих документів. Запропоновано 

поєднуати модель пошуку документів Sentence BERT із моделлю вилучення відповідей на основі моделі RoBERTa. 

Документація проекту Apache Beam була використана як приклад внутрішньої документації компанії. 

Запропонований підхід було оцінено на тестовому наборі даних, що містив 63 пари запитань-відповідей у 

форматі SQuAD, і показав хорошу продуктивність, з оцінками F1 та Exact Match ~ 0,73 та ~ 0,53 відповідно. 

Таким чином, підприємства можуть використовувати схожий підхід для створення внутрішніх чат-ботів для 

полегшення управління знаннями. 

Ключові слова: Чат-бот, NLP моделі, Sentence BERT, RoBERTa, Управління Знаннями 
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Introduction. Nowadays, the software is 

developed in a multi-site, multicultural, 

globally d-istributed environment. Along with 

the benefits obtained through globally 

distributed development, there are many 

challenges faced by various companies as well. 

The main challenges for efficient project 

management in a remote distributed context 

are lack of communication, coordination, and 

control, complicated knowledge sharing, and 

lack of knowledge about Agile practices 

among team members (Bogolii, 2023). 

Companies use different strategies and 

techniques to mitigate certain challenges. Still, 

the efficiency of these strategies may vary in 

different teams and organizations and may not 

always be possible to apply. It is especially 

complicated to tackle communication, 

collaboration, and knowledge-sharing issues in 

a geographically distributed team where 

members work in different time zones. 

With development held from various 

places in different timezones, it can be strongly 

advantageous to have employees unblocked 

with answering on time different sorts of 

questions that they may have. Intelligent 

chatbots that use NLP models can be a 

valuable part of this support process. Using 

chatbots to answer common questions and 

queries could allow team members in different 

time zones to find answers to their questions 

more easily and not be blocked by a lack of 

information. On the other hand, it reduces the 

number of questions to be checked and replied 

to, unloading the staff from too many 

interruptions and giving the possibility to 

answer remaining requests better. 

While chatbots are being widely used as 

an essential element of the customer 

management process, no case studies are 

available that describe the experience of using 

chatbots internally inside organizations to 

facilitate knowledge management and mitigate 

communication challenges. 

Besides the presence of well-known 

platforms such as Dialogflow from Google, 

Microsoft Bot Framework, IBM Watson, and 

others, organizations often do not want to 

expose internal documentation to these 

external providers. That is why building in-

house solutions is often considered the only 

possible solution. 

This paper will examine an approach to 

knowledge management inside the 

organization that uses natural language 

processing models to build a chatbot, 

integrated into an existing communication 

tool, to help employees find the answers to 

their questions. We will examine the accuracy 

of answers of the proposed system on a test 

dataset. 

Literature review. Currently, there exist 

different types of chatbots. According to the 

knowledge domain, chatbots can be classified 

into two types: open-domain and closed-

domain. Open-domain chatbots can chat about 

any topic, while closed-domain chatbots can 

only chat about a specific topic. 

Also, chatbots differ in the learning 

methods they use and how the answers are 

provided. As for learning methods, chatbots 

may be rule-based, retrieval-based, or machine 

learning-based. The provided answers may be 

extracted or generated from documents stored 

in the knowledge base. 

The traditional Rule-based chatbots 

operate on a set of predefined rules and 

patterns to generate responses. The chatbot 

matches user input against these rules and 

provides the appropriate response. However, 

these chatbots struggle to understand context, 

handle ambiguous queries, or adapt to new 

scenarios without manual rule updates. 

Retrieval-based chatbots are another 

type of chatbot that relies on predefined 

responses, but they differ from rule-based 

chatbots in how they select the appropriate 

response. Instead of relying on explicit rules, 

retrieval-based chatbots use a retrieval 

mechanism to find the most suitable response 

from a predefined set of responses. Retrieval-

based chatbots are effective for handling 

specific domains or FAQs where the training 

data covers a wide range of possible user 

inputs and corresponding responses. They can 

provide accurate responses based on similar 

inputs they have seen during training. 

However, retrieval-based models may struggle 

to handle out-of-domain queries or generate 

creative and contextually rich responses. 
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Recently, machine learning, particularly 

neural approaches to building chatbots, gained 

popularity. Neural approaches typically 

employ the transformers architecture (Vaswani 

et al., 2017), which uses two recurrent neural 

networks (RNNs) called Encoder and Decoder. 

The encoder encodes the input sentences into a 

semantic representation by consuming the 

words from left to right, one by one. Then, the 

decoder decodes this fixed-length 

representation to generate the target sequence. 

This particular family of ML approaches is 

called sequence-to-sequence (seq2seq). 

Seq2seq models are often used to build 

generative chatbots. 

Neural approaches can also be used to 

build extractive chatbots. Neural question-

answering (QA) models are trained on 

question-answer pairs and can be used for 

extractive chatbots. Based on the question, 

these models learn to identify the answer span 

within a given context. Typically, such models 

employ only Encoder from the transformers 

architecture. 

Scaling up such language models with 

billions of parameters gives impressive results 

for a broad set of  NLP tasks. For example, 

OpenAI researchers trained a GPT-3 model 

with 175 billion parameters. Often, such 

models are trained on enormous amounts of 

data and called Large Language Models. Some 

examples of large language models include 

flan-t5-base, flan-paLM, chinchilla, and GPT-

3 variants, such as text-davinci-003. 

Despite the performance of Large 

Language Models, their usage may be 

challenging. Popular models have scaled 

exponentially concerning the number of 

parameters and the size of the pre-training 

data. Unfortunately, existing compressing 

techniques cannot compress super large 

models (e.g., GPT-3) to a suitable degree for 

deployment on a single GPU or terminal 

device such as a laptop or cell phone. 

Thus being said, hybrid approaches can 

be used to provide decent results using smaller-

sized language models (GPT-2, RoBERTa, 

etc.). 

For example, a combination of 

information retrieval (IR)-based chatbots and 

neural chatbot technology.  It often 

outperforms IR and neural chatbots used alone. 

The method uses IR to extract QA pair 

candidates and then does a close analysis of 

documents and performs the core task of 

question answering using the attentive seq2seq 

model. Information retrieval is usually 

implemented using a TF-IDF index variant, 

like BM25 (Robertson et al., 1994). 

It is worth mentioning, a popular 

framework -  SentenceBERT (SBERT),  

proposed by Reimers & Gurevych (2019).  

SBERT is a modification of the pretrained 

BERT model (Devlin et al., 2019), that uses a 

siamese network to derive semantic sentence 

embeddings that can be used to calculate 

cosine similarity between sentences,  which 

potentially improves text retrieval by 

understanding the content of the supplied text. 

While the words may be different, they may be 

semantically similar in meaning. For this 

reason, it often outperforms the TF-IDF index. 

These hybrid approaches seem 

especially promising for this research, as often 

internal company documentation represents 

semi-structured content (FAQ, Wiki, etc.) 

spread among multiple documents, so combing 

the search of relative documents with efficient 

tools for extraction of answers looks very 

advantageous. 

Methodology. In this paper, we use a 

hybrid approach to build a chatbot integrated 

into a company’s messaging system, so 

employees can use it almost the same way as if 

they ask a question to their colleagues. 

Questions are processed by the proposed 

framework, and the answer is posted next to 

the message of the question. 

Results. The implementation in this 

study uses Python 3.7 with the PyTorch library 

and is based on the Haystack framework from 

Deepset. We constructed a custom pipeline 

that retrieves the most relevant documents for 

search queries from the document index and 

then processes them to return the answer. See 

Figure 1 for the pipeline structure. 
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Figure 1. Retriever-Reader pipeline 

Source: Figure created by authors 

  
To find the most relevant documents for 

a given search query, we use the Sentence-

BERT method with the multi-qa-mpnet-base-

cos-v1 model, which has been trained on 215M 

(question, answer) pairs from diverse sources 

and can be used to retrieve documents based on 

a short query. The documents with the highest 

similarity are then passed to the next stage. 

Next, relevant documents are analyzed to 

extract the best answer to the query. We used 

the transformer-based language model 

deepset/deberta-v3-large-squad2 from 

HuggingFace. This is the RoBERTa base 

model (Liu et al., 2019) that was fine-tuned on 

question-answer pairs, including unanswerable 

questions. The benchmark (Question 

Answering on Squad_v2, n.d.) shows that this 

model has the highest performance for 

Question Answering, still being able to run on 

average developer setup. 

All setup and testing for the platforms 

and models outlined here were conducted on a 

MacBook Pro with an Apple M1 Pro chip and 

32 GB RAM. 

Dataset. Organizations often use 

enterprise wiki tools to store internal 

documentation. For this research, we used 

open wiki documentation for the Apache Beam 

project (Apache Beam, n.d.). 

Documentation is written in English and 

spread among multiple pages.  Pages often use 

different formatting options to make them 

more readable and accessible, including 

headings, tables, code snippets, etc. We wrote 

a Python script to scrape the pages from Wiki, 

each page in its file. Next, data from pages 

were preprocessed, using the following steps: 

1. Extract the text from HTML tags 

2. Filter only sentences that have Nouns and 

Verbs. 

3. Remove consecutive empty lines and 

whitespaces at the beginning or end of each 

line in the text 

4. Split into smaller documents of around 100 

words each, with a sliding window of 20, to 

improve the document retrieval performance. 

As shown in Figure 1, the proposed 

pipeline consists of retrieval and reader stages. 

In the retrieval stage, we look for relevant 

documents in the document index. In the 

reader stage, we use the top 5 most relevant 

documents as a context for answer generation 

to the query. In the next paragraphs, we will 

examine the results of the work of each stage 

and will evaluate their accuracy. 

Retrieval. At this stage, Sentence-BERT 

was used to calculate cosine similarity between 

the question embedding and each paragraph 
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embedding. The top 5 paragraphs with high 

scores are retrieved. Table 2 presents an 

example of paragraph retrieval for a test query: 

“How do I get started contributing to Apache 

Beam?”. 

 
Table 1. Top 5 similar paragraphs to the example query 

Paragraphs Score 

This is the Apache Beam Wiki, with tips, tricks, and detailed guides for contributors. If you want to learn 

about how to use  Apache Beam, start with  https://beam.apache.org Browse the page tree in the sidebar 

for IDE tips, technical documentation, howtos, etc. 

0.86603 

Frequently asked questions about contributing to Apache Beam. About contributing What should I do 

after the committer reviews my PR? The reviewer should give the Looks Good to Me (LGMT) in the PR 

and then you (the author of the pull request) should rebase, squash, or split, the commits so that the history 

is useful. How do I get started contributing to Apache Beam? See  https://beam.apache.org/contribute/ 

Whom should I ask if I am stuck? How can I opt-in to reviewing pull requests? Go to  

https://github.com/apache/  repo. 

0.84717 

NOTE: Beam no longer uses Jira for issue tracking. Instead, please see  

https://beam.apache.org/contribute/  for information on getting started with GitHub Issues. Jira may still 

be needed to interact with other Apache projects or Infra, but will not be needed for most contributors. 

This guide aims to introduce Beam contributors to the basics of using Apache Jira. How to get started on 
Jira To start collaboration in Apache Jira: Access the  Apache Jira dashboard. Read the introduction to 

see what permissions are available to users and to create an account.  

0.84552 

Clone the Apache beam project from  https://github.com/apache/beam using main branch.  0.83945 

If you have any questions, do not hesitate to reach out to us in the Apache Beam mailing list at  

dev@beam.apache.org  (you will need to subscribe first by emailing  dev-subscribe@beam.apache.org ). 

Our team of mentors will be happy to answer any of your questions, and we are looking forward to hearing 

from you 

0.83062 

Source: Table created by authors 

 
Reader. Most relevant paragraphs, like 

those presented in Table 1, are then passed to 

the reader model for answer extraction. Table 

2 shows the top 3 pipeline answers and the 

corresponding context. 

 

Table 2. Top 3 answers to the example query 

Answer Context Score 

Roadmap A great place to start is the user-facing Roadmap. But there's a lot going on 

that isn't necessarily listed there. 
0.87417 

Clone Clone the Apache beam project from  https://github.com/apache/beam using 

main branch. 
0.72821 

Fork the  
github.com/apache/beam 

repo 

To create a new pull request, follow the next steps:  
Fork the  github.com/apache/beam repo  

Clone your fork, for example 

$ git clone git@github. 

0.72534 

Source: Table created by authors 

  
Evaluation of results. To be able to 

make a statement about the quality of results in 

a question-answering pipeline, it is important 

to evaluate it. Two metrics used to evaluate the 

performance are F1-score and Exact match: 

- Exact match measures the proportion of 

cases where the predicted Answer is identical 

to the correct Answer. For example, for the 

annotated question-answer pair “What is 

Chatbot?" + "intelligent conversational agent,” 

even a predicted answer like “conversational 

intelligent agent” would yield a zero score 

because it does not match the expected answer 

100%. 

- The F1 score is more forgiving and 

measures the word overlap between the labeled 
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and the predicted answer. Whenever the EM is 

1, F1 will also be 1.  

Annotated datasets are crucial for 

evaluating the retrieval and the question-

answering capabilities of the system. For this 

reason, we prepared the evaluation dataset with 

63 question-answering pairs in SQuAD format 

(Rajpurkar et al., 2018). Evaluation of the 

pipeline returned an F1-Score of 0.73204 and 

an Exact Match Score of 0.53448. 

Discussion. As per our findings, data 

preprocessing steps can significantly impact 

the system's performance, and effective 

handling of data is key to getting the most out 

of pipeline performance. In particular, splitting 

large documents into smaller documents of 

around 100 words was significantly beneficial. 

To achieve the highest performance, we 

tested the pipeline with different sets of models 

used for retrieval and reader.  For the retrieval 

part, we tested following models used for 

Sentence Similarity tasks - multi-qa-mpnet-

base-dot-v1, all-mpnet-base-v2 and all-

distilroberta-v1. multi-qa-mpnet-base-dot-v1 

had the highest precision and recall among 

them, probably because it was fine-tuned to 

retrieve documents based on short queries, 

similar to the questions in testset. We assume 

that even better results could be achieved by 

using OpenAI or Cohere embeddings, but we 

limited our tests to only models that have free 

access. In addition, to tests with different 

models, we also tried to use the TF-IDF index 

instead of SBERT for document retrieval. 

However, after manual verification of retrieval 

results on test queries, we saw that in plenty of 

cases where TF-IDF was failing, Sentence-

BERT was performing well. 

For the reader, at first we experimented 

with the most popular deepset/roberta-base-

squad2 model, which gave decent results, with 

the F1 score being around 0.63. However, after 

we replaced it with deepset/deberta-v3-large-

squad2 we got around a 15% percent increase. 

We also experimented with several seq2seq 

models, like google/flan-t5-large, but during 

manual evaluation, we found the results were 

worse. More fine-tuning is needed to 

efficiently use these models, which could be a 

subject for subsequent research. 

For companies that have documentation 

wikis with similar characteristics under similar 

experimental conditions, similar results can be 

expected. 

In addition to reassuring results, worst to 

mention the limitations of the investigated 

approach. The proposed chatbot was trained on 

a closed-domain dataset that contains a limited 

number of topics. In our case, we tested the 

dataset covering rephrased questions and 

answers about the Apache Beam framework. 

Thus, such a chatbot cannot answer unrelated 

questions. 

Conclusions. In this paper, we discussed 

the approach to knowledge management inside 

the organization that helps employees find the 

answers to their questions on time.  We 

proposed a methodology that uses natural 

language processing models to build an 

intelligent chatbot that uses the company's 

internal wiki to answer employees' queries. 

The system could run on a standard 

developer machine and accurately answer 

certain questions that would otherwise require 

colleagues' interruption. We found that the 

preprocessing of data, data cleanup, and the 

NLP models chosen significantly impact 

chatbot performance. 

As the performance of the proposed 

approach is encouraging, further investigation 

would be required in several distinct areas. 

Natural language processing is a very fast-

evolving field, with new pre-trained models 

appearing very often, significantly improving 

the quality of results. 

In the future, we would like to 

incorporate messages from the company’s 

communication tools into the chatbot’s 

document store. Frequent questions were 

already asked at some time in messengers; 

together with replies, they could be used as an 

additional content source for the chatbot. 

Lastly, we want to do an extensive evaluation 

of the pipeline utilizing semantic similarity of 

the two answers rather than their lexical 

overlap (Semantic Answer Similarity). 
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