
ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №2 (74), 2024

178

УДК: 004.852:005.94

DOI: 10.31732/2663-2209-2024-74-178-184

IMPROVING KNOWLEDGE MANAGEMENT IN AN ORGANIZATION WITH NLP

MODELS

Oleksandr Bogolii1

1PhD Student, “KROK” University, Kyiv, Ukraine, email: boholiiom@krok.edu.ua, ORCID: https://orcid.org/0000-

0003-0253-667X

ВДОСКОНАЛЕННЯ УПРАВЛІННЯ ЗНАННЯМИ В ОРГАНІЗАЦІЇ ЗА ДОПОМОГОЮ

NLP МОДЕЛЕЙ

Олександр Боголій1

1Aспірант, ВНЗ «Університет економіки та права «КРОК», м. Київ, Україна, e-mail: boholiiom@krok.edu.ua,

ORCID: https://orcid.org/0000-0003-0253-667X

Abstract: In recent years, it has become prevalent for software development to be held from different places in

different time zones. In such a setup, to manage projects efficiently it is crucial to pay special attention to knowledge

management inside the organization. The purpose of the article is to provide suggestions for improving knowledge

management in the organization using NLP models. In this paper, we use a hybrid approach to build a chatbot integrated

into a company’s messaging system, so employees can use it almost the same way as if they ask a question to their

colleagues. Questions are processed by the proposed framework, and the answer is posted next to the message of the

question. While companies often have a lot of documentation in different kinds of wikis and documents, it may be
challenging to find an answer to a question on time. Often, employees have to wait hours to get help from colleagues in

other time zones. Having an intelligent chatbot inside an organization capable of answering questions using internal docs

as a source could be beneficial. In this paper, we proposed an approach to building an intelligent chatbot, utilizing pre-

build NLP models for efficient retrieval of documents, similar to the employee’s query, and further extracting answers

from these documents. We combine the Sentence BERT document retrieval model with the RoBERTa-based answer

extraction model. Apache Beam project wiki was used as an example of the company’s internal wiki. The proposed

approach was evaluated on a test dataset containing 63 question-answer pairs in SQuAD format, and showed good

performance, with F1 and Exact Match scores being ~0.73 and ~0.53 respectively. Thus, enterprises can use the same

technique to build internal chatbots to facilitate knowledge management.

Keywords: Chatbots, NLP models, Sentence BERT, RoBERTa, Knowledge Management

Formulas: 0, fig.: 1, tabl.: 2, bibl.: 8

Анотація. Останнім часом розробка програмного забезпечення дедалі частіше відбувається за участі

команд, розподілених по різних місцях та часових поясах. За таких умов, для ефективного управління проектами

вкрай важливо приділяти особливу увагу управлінню знаннями всередині організації. Метою статті є надання

пропозицій щодо вдосконалення управління знаннями в організації за допомогою NLP моделей. У цій статті ми

використовуємо гібридний підхід для створення чат-бота, інтегрованого в систему обміну повідомленнями

компанії, щоб співробітники могли використовувати його майже так само, як якщо б вони ставили запитання

своїм колегам. Питання опрацьовуються запропонованим фреймворком, а відповідь розміщується поруч із

повідомленням запитання. Незважаючи на те, що компанії зазвичай мають досить багато документації в

різноманітних wiki-сторінках та документах, знайти вчасно відповідь на запитання буває досить складно.

Часто співробітникам доводиться годинами чекати, щоб отримати допомогу від колег, що працюють в інших
часових зонах. Для організації може бути корисним використання інтелектуального чат-бота, здатного

відповідати на запитання, використовуючи внутрішню документацію як джерело. У цій статті ми пропонуємо

підхід до створення чат-бота, що використовує попередньо створені NLP моделі для пошуку документів,

релевантних запиту співробітника, та подальшого вилучення відповідей із цих документів. Запропоновано

поєднуати модель пошуку документів Sentence BERT із моделлю вилучення відповідей на основі моделі RoBERTa.

Документація проекту Apache Beam була використана як приклад внутрішньої документації компанії.

Запропонований підхід було оцінено на тестовому наборі даних, що містив 63 пари запитань-відповідей у

форматі SQuAD, і показав хорошу продуктивність, з оцінками F1 та Exact Match ~ 0,73 та ~ 0,53 відповідно.

Таким чином, підприємства можуть використовувати схожий підхід для створення внутрішніх чат-ботів для

полегшення управління знаннями.

Ключові слова: Чат-бот, NLP моделі, Sentence BERT, RoBERTa, Управління Знаннями

Формул: 0, рис.: 1, табл.: 2, бібл.: 8

mailto:boholiiom@krok.edu.ua
https://orcid.org/0000-0003-0253-667X
https://orcid.org/0000-0003-0253-667X
mailto:boholiiom@krok.edu.ua

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №2 (74), 2024

179

Introduction. Nowadays, the software is

developed in a multi-site, multicultural,

globally d-istributed environment. Along with

the benefits obtained through globally

distributed development, there are many

challenges faced by various companies as well.

The main challenges for efficient project

management in a remote distributed context

are lack of communication, coordination, and

control, complicated knowledge sharing, and

lack of knowledge about Agile practices

among team members (Bogolii, 2023).

Companies use different strategies and

techniques to mitigate certain challenges. Still,

the efficiency of these strategies may vary in

different teams and organizations and may not

always be possible to apply. It is especially

complicated to tackle communication,

collaboration, and knowledge-sharing issues in

a geographically distributed team where

members work in different time zones.

With development held from various

places in different timezones, it can be strongly

advantageous to have employees unblocked

with answering on time different sorts of

questions that they may have. Intelligent

chatbots that use NLP models can be a

valuable part of this support process. Using

chatbots to answer common questions and

queries could allow team members in different

time zones to find answers to their questions

more easily and not be blocked by a lack of

information. On the other hand, it reduces the

number of questions to be checked and replied

to, unloading the staff from too many

interruptions and giving the possibility to

answer remaining requests better.

While chatbots are being widely used as

an essential element of the customer

management process, no case studies are

available that describe the experience of using

chatbots internally inside organizations to

facilitate knowledge management and mitigate

communication challenges.

Besides the presence of well-known

platforms such as Dialogflow from Google,

Microsoft Bot Framework, IBM Watson, and

others, organizations often do not want to

expose internal documentation to these

external providers. That is why building in-

house solutions is often considered the only

possible solution.

This paper will examine an approach to

knowledge management inside the

organization that uses natural language

processing models to build a chatbot,

integrated into an existing communication

tool, to help employees find the answers to

their questions. We will examine the accuracy

of answers of the proposed system on a test

dataset.

Literature review. Currently, there exist

different types of chatbots. According to the

knowledge domain, chatbots can be classified

into two types: open-domain and closed-

domain. Open-domain chatbots can chat about

any topic, while closed-domain chatbots can

only chat about a specific topic.

Also, chatbots differ in the learning

methods they use and how the answers are

provided. As for learning methods, chatbots

may be rule-based, retrieval-based, or machine

learning-based. The provided answers may be

extracted or generated from documents stored

in the knowledge base.

The traditional Rule-based chatbots

operate on a set of predefined rules and

patterns to generate responses. The chatbot

matches user input against these rules and

provides the appropriate response. However,

these chatbots struggle to understand context,

handle ambiguous queries, or adapt to new

scenarios without manual rule updates.

Retrieval-based chatbots are another

type of chatbot that relies on predefined

responses, but they differ from rule-based

chatbots in how they select the appropriate

response. Instead of relying on explicit rules,

retrieval-based chatbots use a retrieval

mechanism to find the most suitable response

from a predefined set of responses. Retrieval-

based chatbots are effective for handling

specific domains or FAQs where the training

data covers a wide range of possible user

inputs and corresponding responses. They can

provide accurate responses based on similar

inputs they have seen during training.

However, retrieval-based models may struggle

to handle out-of-domain queries or generate

creative and contextually rich responses.

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №2 (74), 2024

180

Recently, machine learning, particularly

neural approaches to building chatbots, gained

popularity. Neural approaches typically

employ the transformers architecture (Vaswani

et al., 2017), which uses two recurrent neural

networks (RNNs) called Encoder and Decoder.

The encoder encodes the input sentences into a

semantic representation by consuming the

words from left to right, one by one. Then, the

decoder decodes this fixed-length

representation to generate the target sequence.

This particular family of ML approaches is

called sequence-to-sequence (seq2seq).

Seq2seq models are often used to build

generative chatbots.

Neural approaches can also be used to

build extractive chatbots. Neural question-

answering (QA) models are trained on

question-answer pairs and can be used for

extractive chatbots. Based on the question,

these models learn to identify the answer span

within a given context. Typically, such models

employ only Encoder from the transformers

architecture.

Scaling up such language models with

billions of parameters gives impressive results

for a broad set of NLP tasks. For example,

OpenAI researchers trained a GPT-3 model

with 175 billion parameters. Often, such

models are trained on enormous amounts of

data and called Large Language Models. Some

examples of large language models include

flan-t5-base, flan-paLM, chinchilla, and GPT-

3 variants, such as text-davinci-003.

Despite the performance of Large

Language Models, their usage may be

challenging. Popular models have scaled

exponentially concerning the number of

parameters and the size of the pre-training

data. Unfortunately, existing compressing

techniques cannot compress super large

models (e.g., GPT-3) to a suitable degree for

deployment on a single GPU or terminal

device such as a laptop or cell phone.

Thus being said, hybrid approaches can

be used to provide decent results using smaller-

sized language models (GPT-2, RoBERTa,

etc.).

For example, a combination of

information retrieval (IR)-based chatbots and

neural chatbot technology. It often

outperforms IR and neural chatbots used alone.

The method uses IR to extract QA pair

candidates and then does a close analysis of

documents and performs the core task of

question answering using the attentive seq2seq

model. Information retrieval is usually

implemented using a TF-IDF index variant,

like BM25 (Robertson et al., 1994).

It is worth mentioning, a popular

framework - SentenceBERT (SBERT),

proposed by Reimers & Gurevych (2019).

SBERT is a modification of the pretrained

BERT model (Devlin et al., 2019), that uses a

siamese network to derive semantic sentence

embeddings that can be used to calculate

cosine similarity between sentences, which

potentially improves text retrieval by

understanding the content of the supplied text.

While the words may be different, they may be

semantically similar in meaning. For this

reason, it often outperforms the TF-IDF index.

These hybrid approaches seem

especially promising for this research, as often

internal company documentation represents

semi-structured content (FAQ, Wiki, etc.)

spread among multiple documents, so combing

the search of relative documents with efficient

tools for extraction of answers looks very

advantageous.

Methodology. In this paper, we use a

hybrid approach to build a chatbot integrated

into a company’s messaging system, so

employees can use it almost the same way as if

they ask a question to their colleagues.

Questions are processed by the proposed

framework, and the answer is posted next to

the message of the question.

Results. The implementation in this

study uses Python 3.7 with the PyTorch library

and is based on the Haystack framework from

Deepset. We constructed a custom pipeline

that retrieves the most relevant documents for

search queries from the document index and

then processes them to return the answer. See

Figure 1 for the pipeline structure.

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №2 (74), 2024

181

Figure 1. Retriever-Reader pipeline

Source: Figure created by authors

To find the most relevant documents for

a given search query, we use the Sentence-

BERT method with the multi-qa-mpnet-base-

cos-v1 model, which has been trained on 215M

(question, answer) pairs from diverse sources

and can be used to retrieve documents based on

a short query. The documents with the highest

similarity are then passed to the next stage.

Next, relevant documents are analyzed to

extract the best answer to the query. We used

the transformer-based language model

deepset/deberta-v3-large-squad2 from

HuggingFace. This is the RoBERTa base

model (Liu et al., 2019) that was fine-tuned on

question-answer pairs, including unanswerable

questions. The benchmark (Question

Answering on Squad_v2, n.d.) shows that this

model has the highest performance for

Question Answering, still being able to run on

average developer setup.

All setup and testing for the platforms

and models outlined here were conducted on a

MacBook Pro with an Apple M1 Pro chip and

32 GB RAM.

Dataset. Organizations often use

enterprise wiki tools to store internal

documentation. For this research, we used

open wiki documentation for the Apache Beam

project (Apache Beam, n.d.).

Documentation is written in English and

spread among multiple pages. Pages often use

different formatting options to make them

more readable and accessible, including

headings, tables, code snippets, etc. We wrote

a Python script to scrape the pages from Wiki,

each page in its file. Next, data from pages

were preprocessed, using the following steps:

1. Extract the text from HTML tags

2. Filter only sentences that have Nouns and

Verbs.

3. Remove consecutive empty lines and

whitespaces at the beginning or end of each

line in the text

4. Split into smaller documents of around 100

words each, with a sliding window of 20, to

improve the document retrieval performance.

As shown in Figure 1, the proposed

pipeline consists of retrieval and reader stages.

In the retrieval stage, we look for relevant

documents in the document index. In the

reader stage, we use the top 5 most relevant

documents as a context for answer generation

to the query. In the next paragraphs, we will

examine the results of the work of each stage

and will evaluate their accuracy.

Retrieval. At this stage, Sentence-BERT

was used to calculate cosine similarity between

the question embedding and each paragraph

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №2 (74), 2024

182

embedding. The top 5 paragraphs with high

scores are retrieved. Table 2 presents an

example of paragraph retrieval for a test query:

“How do I get started contributing to Apache

Beam?”.

Table 1. Top 5 similar paragraphs to the example query

Paragraphs Score

This is the Apache Beam Wiki, with tips, tricks, and detailed guides for contributors. If you want to learn

about how to use Apache Beam, start with https://beam.apache.org Browse the page tree in the sidebar

for IDE tips, technical documentation, howtos, etc.

0.86603

Frequently asked questions about contributing to Apache Beam. About contributing What should I do

after the committer reviews my PR? The reviewer should give the Looks Good to Me (LGMT) in the PR

and then you (the author of the pull request) should rebase, squash, or split, the commits so that the history

is useful. How do I get started contributing to Apache Beam? See https://beam.apache.org/contribute/

Whom should I ask if I am stuck? How can I opt-in to reviewing pull requests? Go to

https://github.com/apache/ repo.

0.84717

NOTE: Beam no longer uses Jira for issue tracking. Instead, please see

https://beam.apache.org/contribute/ for information on getting started with GitHub Issues. Jira may still

be needed to interact with other Apache projects or Infra, but will not be needed for most contributors.

This guide aims to introduce Beam contributors to the basics of using Apache Jira. How to get started on
Jira To start collaboration in Apache Jira: Access the Apache Jira dashboard. Read the introduction to

see what permissions are available to users and to create an account.

0.84552

Clone the Apache beam project from https://github.com/apache/beam using main branch. 0.83945

If you have any questions, do not hesitate to reach out to us in the Apache Beam mailing list at

dev@beam.apache.org (you will need to subscribe first by emailing dev-subscribe@beam.apache.org).

Our team of mentors will be happy to answer any of your questions, and we are looking forward to hearing

from you

0.83062

Source: Table created by authors

Reader. Most relevant paragraphs, like

those presented in Table 1, are then passed to

the reader model for answer extraction. Table

2 shows the top 3 pipeline answers and the

corresponding context.

Table 2. Top 3 answers to the example query

Answer Context Score

Roadmap A great place to start is the user-facing Roadmap. But there's a lot going on

that isn't necessarily listed there.
0.87417

Clone Clone the Apache beam project from https://github.com/apache/beam using

main branch.
0.72821

Fork the
github.com/apache/beam

repo

To create a new pull request, follow the next steps:
Fork the github.com/apache/beam repo

Clone your fork, for example

$ git clone git@github.

0.72534

Source: Table created by authors

Evaluation of results. To be able to

make a statement about the quality of results in

a question-answering pipeline, it is important

to evaluate it. Two metrics used to evaluate the

performance are F1-score and Exact match:

- Exact match measures the proportion of

cases where the predicted Answer is identical

to the correct Answer. For example, for the

annotated question-answer pair “What is

Chatbot?" + "intelligent conversational agent,”

even a predicted answer like “conversational

intelligent agent” would yield a zero score

because it does not match the expected answer

100%.

- The F1 score is more forgiving and

measures the word overlap between the labeled

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №2 (74), 2024

183

and the predicted answer. Whenever the EM is

1, F1 will also be 1.

Annotated datasets are crucial for

evaluating the retrieval and the question-

answering capabilities of the system. For this

reason, we prepared the evaluation dataset with

63 question-answering pairs in SQuAD format

(Rajpurkar et al., 2018). Evaluation of the

pipeline returned an F1-Score of 0.73204 and

an Exact Match Score of 0.53448.

Discussion. As per our findings, data

preprocessing steps can significantly impact

the system's performance, and effective

handling of data is key to getting the most out

of pipeline performance. In particular, splitting

large documents into smaller documents of

around 100 words was significantly beneficial.

To achieve the highest performance, we

tested the pipeline with different sets of models

used for retrieval and reader. For the retrieval

part, we tested following models used for

Sentence Similarity tasks - multi-qa-mpnet-

base-dot-v1, all-mpnet-base-v2 and all-

distilroberta-v1. multi-qa-mpnet-base-dot-v1

had the highest precision and recall among

them, probably because it was fine-tuned to

retrieve documents based on short queries,

similar to the questions in testset. We assume

that even better results could be achieved by

using OpenAI or Cohere embeddings, but we

limited our tests to only models that have free

access. In addition, to tests with different

models, we also tried to use the TF-IDF index

instead of SBERT for document retrieval.

However, after manual verification of retrieval

results on test queries, we saw that in plenty of

cases where TF-IDF was failing, Sentence-

BERT was performing well.

For the reader, at first we experimented

with the most popular deepset/roberta-base-

squad2 model, which gave decent results, with

the F1 score being around 0.63. However, after

we replaced it with deepset/deberta-v3-large-

squad2 we got around a 15% percent increase.

We also experimented with several seq2seq

models, like google/flan-t5-large, but during

manual evaluation, we found the results were

worse. More fine-tuning is needed to

efficiently use these models, which could be a

subject for subsequent research.

For companies that have documentation

wikis with similar characteristics under similar

experimental conditions, similar results can be

expected.

In addition to reassuring results, worst to

mention the limitations of the investigated

approach. The proposed chatbot was trained on

a closed-domain dataset that contains a limited

number of topics. In our case, we tested the

dataset covering rephrased questions and

answers about the Apache Beam framework.

Thus, such a chatbot cannot answer unrelated

questions.

Conclusions. In this paper, we discussed

the approach to knowledge management inside

the organization that helps employees find the

answers to their questions on time. We

proposed a methodology that uses natural

language processing models to build an

intelligent chatbot that uses the company's

internal wiki to answer employees' queries.

The system could run on a standard

developer machine and accurately answer

certain questions that would otherwise require

colleagues' interruption. We found that the

preprocessing of data, data cleanup, and the

NLP models chosen significantly impact

chatbot performance.

As the performance of the proposed

approach is encouraging, further investigation

would be required in several distinct areas.

Natural language processing is a very fast-

evolving field, with new pre-trained models

appearing very often, significantly improving

the quality of results.

In the future, we would like to

incorporate messages from the company’s

communication tools into the chatbot’s

document store. Frequent questions were

already asked at some time in messengers;

together with replies, they could be used as an

additional content source for the chatbot.

Lastly, we want to do an extensive evaluation

of the pipeline utilizing semantic similarity of

the two answers rather than their lexical

overlap (Semantic Answer Similarity).

ISSN (Print) 2307-6968, ISSN (Online) 2663-2209

Вчені записки Університету «КРОК» №2 (74), 2024

184

References:
1. Bogolii, O. (2023). Agile Software Development in

a Remotely Working Geographically Distributed Team:

A Systematic Review. European Project Management

Journal, 13(1), 23–36.

https://doi.org/10.56889/idnv2224
2. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,

Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I.

(2017). Attention Is All You Need (arXiv:1706.03762).

arXiv. http://arxiv.org/abs/1706.03762

3. Robertson, S., Walker, S., Jones, S., Hancock-

Beaulieu, M., & Gatford, M. (1994). Okapi at TREC-

Reimers, N., & Gurevych, I. (2019). Sentence-BERT:

Sentence Embeddings using Siamese BERT-Networks

(arXiv:1908.10084). arXiv.

http://arxiv.org/abs/1908.10084

4. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K.
(2019). BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding

(arXiv:1810.04805). arXiv.

https://doi.org/10.48550/arXiv.1810.04805

5. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen,

D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov,

V. (2019). RoBERTa: A Robustly Optimized BERT
Pretraining Approach.

https://doi.org/10.48550/ARXIV.1907.11692

6. Question Answering on squad_v2. (n.d.). Papers

with Code. Retrieved March 8, 2024, from

https://paperswithcode.com/sota/question-answering-

on-squad-v2

7. Apache Beam. (n.d.). Apache Beam Wiki. Retrieved

March 8, 2024, from

https://cwiki.apache.org/confluence/display/BEAM/Ap

ache+Beam

8. Rajpurkar, P., Jia, R., & Liang, P. (2018). Know
What You Don’t Know: Unanswerable Questions for

SQuAD (arXiv:1806.03822). arXiv.

http://arxiv.org/abs/1806.03822

	1. Extract the text from HTML tags
	2. Filter only sentences that have Nouns and Verbs.
	3. Remove consecutive empty lines and whitespaces at the beginning or end of each line in the text
	4. Split into smaller documents of around 100 words each, with a sliding window of 20, to improve the document retrieval performance.
	Source: Table created by authors
	- Exact match measures the proportion of cases where the predicted Answer is identical to the correct Answer. For example, for the annotated question-answer pair “What is Chatbot?" + "intelligent conversational agent,” even a predicted answer like “co...
	- The F1 score is more forgiving and measures the word overlap between the labeled and the predicted answer. Whenever the EM is 1, F1 will also be 1.
	1. Bogolii, O. (2023). Agile Software Development in a Remotely Working Geographically Distributed Team: A Systematic Review. European Project Management Journal, 13(1), 23–36. https://doi.org/10.56889/idnv2224
	2. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need (arXiv:1706.03762). arXiv. http://arxiv.org/abs/1706.03762
	3. Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M., & Gatford, M. (1994). Okapi at TREC-Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks (arXiv:1908.10084). arXiv. http://arxiv.org/abs/1908....
	4. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (arXiv:1810.04805). arXiv. https://doi.org/10.48550/arXiv.1810.04805
	5. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. https://doi.org/10.48550/ARXIV.1907.11692
	6. Question Answering on squad_v2. (n.d.). Papers with Code. Retrieved March 8, 2024, from https://paperswithcode.com/sota/question-answering-on-squad-v2
	7. Apache Beam. (n.d.). Apache Beam Wiki. Retrieved March 8, 2024, from https://cwiki.apache.org/confluence/display/BEAM/Apache+Beam
	8. Rajpurkar, P., Jia, R., & Liang, P. (2018). Know What You Don’t Know: Unanswerable Questions for SQuAD (arXiv:1806.03822). arXiv. http://arxiv.org/abs/1806.03822

